Attractive and repulsive training to address inter-task forgetting issues in continual learning

遗忘 计算机科学 人工智能 任务(项目管理) 班级(哲学) 机器学习 特征(语言学) 分类器(UML) 集合(抽象数据类型) 认知心理学 心理学 语言学 哲学 管理 经济 程序设计语言
作者
Hong-Jun Choi,Dong-Wan Choi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:500: 486-498
标识
DOI:10.1016/j.neucom.2022.05.079
摘要

In continual learning over deep neural networks (DNNs), the rehearsal strategy , in which the previous exemplars are jointly trained with new samples, is commonly employed for the purpose of addressing catastrophic forgetting . Unfortunately, due to the memory limit, rehearsal-based techniques inevitably cause the class imbalance issue leading to a DNN biased toward new tasks having more samples. Existing works mostly focus on correcting such a bias in the fully connected layer or classifier. In this paper, we newly discover that class imbalance tends to make old classes even more highly correlated with their similar new classes in the feature space, which turns out to be the major reason behind catastrophic forgetting, called inter-task forgetting . To alleviate inter-task forgetting, we propose a novel class incremental learning method, called attractive & repulsive training (ART) , which effectively captures the previous feature space into a set of class-wise flags , and thereby makes old and new similar classes less correlated in the new feature space. In our empirical study, our ART method is observed to be quite effective to improve the performance of the state-of-the-art methods by substantially mitigating inter-task forgetting. Our implementation is available at: https://github.com/bigdata-inha/ART/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权小夏发布了新的文献求助20
1秒前
共享精神应助yuyu采纳,获得10
2秒前
英俊的铭应助Dashihhhh采纳,获得10
3秒前
3秒前
4秒前
伶俐寒凡完成签到 ,获得积分10
4秒前
搜集达人应助zhang005on采纳,获得10
5秒前
pumpkin完成签到,获得积分20
5秒前
大陆完成签到,获得积分10
5秒前
刘星星完成签到,获得积分20
5秒前
lili完成签到,获得积分10
6秒前
6秒前
Singularity举报跳跳糖求助涉嫌违规
6秒前
美丽映容完成签到 ,获得积分10
6秒前
繁荣的凡英完成签到,获得积分10
8秒前
baixiazi发布了新的文献求助10
8秒前
9秒前
pumpkin发布了新的文献求助10
10秒前
欣喜忆曼发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
跳跃虔发布了新的文献求助10
13秒前
16秒前
17秒前
17秒前
qq158014169发布了新的文献求助10
17秒前
来者发布了新的文献求助10
17秒前
18秒前
小二郎应助你说采纳,获得10
19秒前
19秒前
20秒前
xiaojian_291发布了新的文献求助10
20秒前
shenerqing发布了新的文献求助10
21秒前
懒懒大王完成签到,获得积分10
21秒前
22秒前
lixiaolu发布了新的文献求助10
23秒前
Diss发布了新的文献求助10
23秒前
zanilia发布了新的文献求助10
23秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693