Defect Detection and Classification Algorithm of Metal Nanomaterials Based on Deep Learning

材料科学 纳米材料 纳米技术 深度学习 人工智能 生物相容性 表征(材料科学) 计算机科学 机器学习 冶金
作者
Bin Xue,Zhisheng Wu
出处
期刊:Integrated Ferroelectrics [Taylor & Francis]
卷期号:226 (1): 277-292 被引量:5
标识
DOI:10.1080/10584587.2022.2065568
摘要

With the rapid development of nanotechnology, researchers can prepare nanomaterials by various methods. The rapid development of nanotechnology has greatly promoted the wide application of nano materials in the field of detection and catalysis. Especially the metal nanomolecules have good biocompatibility, absorption of plasma surface resonance, enhanced Raman surface and other properties. Metal nanomolecules have good biocompatibility, absorption of plasma surface resonance and enhanced Raman surface Rice inspection and catalytic application have attracted wide attention. This paper mainly studies the defect detection and classification algorithm of metal nanomaterials based on deep learning. Through the experimental phenomena, we can understand and master the defect detection methods of metal nanomaterials, and review the problems and future development direction of the preparation of metal nanomaterials. Deep learning algorithm the first mock exam deep learning network model, metal defect multi-mode detection method and the classification of metal surface defects are investigated. The defect detection of metal nano materials based on deep learning is realized. The whole defect and the quantitative detection of metal defects are realized. The detection range of traditional single mode nondestructive testing technology is overcome. The deficiency of accurate quantitative detection is difficult. The results show that there are five characteristic parameters for metal nano surface defect detection. In the deep learning based defect detection and classification algorithm, the big data technology is used to analyze the complete defect data, environmental data and working intensity data to complete the prediction of the future development trend of defects, which can play an important role in the maintenance of materials It is also of great significance to the development of metal nano detection technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
3秒前
ysysljj发布了新的文献求助10
6秒前
复杂的兔子完成签到,获得积分10
6秒前
7秒前
1234完成签到,获得积分10
8秒前
魔幻流沙完成签到,获得积分20
8秒前
周娅敏发布了新的文献求助10
11秒前
善学以致用应助LYQ采纳,获得10
12秒前
nesire发布了新的文献求助30
14秒前
15秒前
18秒前
传奇3应助YOLK97采纳,获得30
18秒前
my发布了新的文献求助10
20秒前
深情安青应助zhouyq采纳,获得10
20秒前
21秒前
领导范儿应助非洲大呲花采纳,获得10
23秒前
swing发布了新的文献求助10
25秒前
优雅的小亮应助陈昇采纳,获得10
25秒前
超帅连虎应助勤恳的路人采纳,获得10
27秒前
公西钧完成签到,获得积分10
27秒前
俊秀的念烟完成签到,获得积分10
27秒前
轻松惜筠完成签到,获得积分10
28秒前
Hello应助小篆采纳,获得10
29秒前
30秒前
30秒前
30秒前
潇洒静芙完成签到 ,获得积分10
30秒前
李靖完成签到 ,获得积分10
32秒前
CodeCraft应助青松果采纳,获得10
32秒前
ysysljj完成签到,获得积分10
34秒前
tfldog发布了新的文献求助10
36秒前
37秒前
37秒前
37秒前
37秒前
YOLK97发布了新的文献求助30
37秒前
科研通AI2S应助小乘号子采纳,获得10
37秒前
37秒前
38秒前
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090348
求助须知:如何正确求助?哪些是违规求助? 3628955
关于积分的说明 11505324
捐赠科研通 3341110
什么是DOI,文献DOI怎么找? 1836589
邀请新用户注册赠送积分活动 904535
科研通“疑难数据库(出版商)”最低求助积分说明 822387