An explainable artificial intelligence approach for financial distress prediction

计算机科学 财务困境 人工智能 财务 业务 金融体系
作者
Zijiao Zhang,Chong Wu,Shiyou Qu,Xiaofang Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (4): 102988-102988 被引量:50
标识
DOI:10.1016/j.ipm.2022.102988
摘要

External stakeholders require accurate and explainable financial distress prediction (FDP) models. Complex machine learning algorithms offer high accuracy, but most of them lack explanatory power, resulting in external stakeholders being cautious in adopting them. Therefore, an explainable artificial intelligence approach including a whole process ensemble method and an explainable frame for FDP is here proposed. The ensemble algorithm from feature selection to predictor construction can achieve high accuracy according to the actual case, and the interpretation framework can meet the needs of external users by generating local explanations and global explanations. First, a two-stage scheme integrated with a filter and wrapper technique is designed for feature selection. Second, multiple ensemble models are explored and they are evaluated according to the actual case. Finally, Shapley additive explanations, counterfactual explanations and partial dependence plots are employed to enhance model interpretability. Taking financial data of Chinese listed companies from 2007 to 2020 as a dataset, the highest AUC is ensured by LightGBM with a value of 0.92. Local explanations help individual enterprises identify the key features which lead to their financial distress, and counterfactual explanations are produced to provide improvement strategies. By analyzing the features importance and the impact of feature interaction on the results, global explanations can improve the transparency and credibility of ‘black box’ models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饱了想唱歌完成签到,获得积分10
刚刚
个性书翠应助温婉的笑晴采纳,获得10
刚刚
1秒前
大力的青亦完成签到,获得积分10
2秒前
852应助hahaha采纳,获得10
2秒前
天堂制造完成签到,获得积分10
2秒前
神奇科研圆完成签到,获得积分10
3秒前
hrbykdxly完成签到,获得积分10
3秒前
Orange应助TTOM采纳,获得10
3秒前
居居侠发布了新的文献求助10
4秒前
菜菜求带完成签到 ,获得积分10
5秒前
洁净方盒发布了新的文献求助10
6秒前
6秒前
向日葵完成签到,获得积分10
6秒前
7秒前
8秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
t通应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
洛希极限发布了新的文献求助10
10秒前
小白应助科研通管家采纳,获得10
10秒前
科研通AI5应助kiyo采纳,获得10
10秒前
小郭完成签到,获得积分10
10秒前
晨曦完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得10
10秒前
热心市民应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
t通应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
若雨凌风应助科研通管家采纳,获得20
11秒前
热心市民应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
小白应助科研通管家采纳,获得20
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836735
求助须知:如何正确求助?哪些是违规求助? 3378964
关于积分的说明 10507075
捐赠科研通 3098797
什么是DOI,文献DOI怎么找? 1706621
邀请新用户注册赠送积分活动 821119
科研通“疑难数据库(出版商)”最低求助积分说明 772445