Deep-learning based reconstruction in optical scanning holography

全息术 计算机科学 人工智能 数字全息术 计算机视觉 迭代重建 深度学习 光学 过度拟合 噪音(视频) 数字全息显微术 图像质量 人工神经网络 图像(数学) 物理
作者
Xusheng Zhuang,Aimin Yan,P.W.M. Tsang,Ting‐Chung Poon
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:158: 107161-107161 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107161
摘要

Optical scanning holography (OSH) can be used to record holograms of large three-dimensional (3-D) objects, based on a two-dimensional (2-D) optical scan. For semi-transparent objects, diffraction waves from all the sections can be recorded in the hologram. Numerical reconstruction of a 3-D volumetric image from an optical scanned hologram is a difficult task. The main problems are the intensive computational load, and the heavy blurring of each reconstructed section with the defocused noise from other sections. In this paper, we propose a deep-learning network for high quality image reconstruction from the optical scanned holograms. Within the framework, a U-net structure is adopted to learn the mapping between a collection of holograms, and their reconstructed volumetric images. We use a two-pupil optical heterodyne scanning system to obtain the training data where a five-fold cross validation method is used to prevent from overfitting and produce enough images in the dataset. The deep-learning based OSH can eliminate the defocus noise and generate high quality reconstruction results from an unknown hologram. Our proposed method is significantly faster than conventional OSH reconstruction algorithms, and hence suitable for processing large holograms that are captured by OSH. The feasibility of our approach is demonstrated with numerical simulations and optical experiments. The deep-learning reconstruction method proposed in the present paper is also applicable to other digital holograms obtained from conventional digital holographic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的大碗完成签到 ,获得积分10
刚刚
ycyang完成签到,获得积分10
刚刚
ste完成签到,获得积分10
1秒前
田小姐发布了新的文献求助10
1秒前
张朝程发布了新的文献求助10
2秒前
2秒前
3秒前
ding应助固高2000zc采纳,获得10
3秒前
诺木发布了新的文献求助10
4秒前
4秒前
hou完成签到 ,获得积分10
4秒前
youyou1990发布了新的文献求助10
4秒前
4秒前
鹤轸发布了新的文献求助10
4秒前
4秒前
weilan完成签到,获得积分10
5秒前
靓丽紫真完成签到 ,获得积分10
5秒前
聪明怜阳完成签到,获得积分10
6秒前
研友_VZG7GZ应助jnn采纳,获得10
6秒前
6秒前
sunyz举报雪白胡萝卜求助涉嫌违规
6秒前
璐璐驳回了SciGPT应助
7秒前
7秒前
一帆风顺发布了新的文献求助20
7秒前
早日暴富发布了新的文献求助10
7秒前
神经娃完成签到,获得积分10
8秒前
9秒前
9秒前
科目三应助田小姐采纳,获得10
9秒前
9秒前
彩色的以莲完成签到,获得积分10
10秒前
酷波er应助kk99采纳,获得10
10秒前
10秒前
科研通AI5应助dllllll采纳,获得10
10秒前
10秒前
10秒前
11秒前
爆米花应助花花采纳,获得10
11秒前
皮皮虾完成签到,获得积分10
12秒前
小兔叽完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011