Interpretable learning approaches in structural MRI: 3D-ResNet fused attention for autism spectrum disorder classification

自闭症谱系障碍 人工智能 计算机科学 深度学习 可视化 自闭症 模式识别(心理学) 胼胝体 异常 特征提取 神经科学 心理学 发展心理学 社会心理学
作者
Xiangjun Chen,Zhaohui Wang,Yuefu Zhan,Faouzi Alaya Cheikh,Mohib Ullah
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 109-109 被引量:5
标识
DOI:10.1117/12.2611435
摘要

Are there any abnormal reflection in the structural Magnetic Resonance Imaging(sMRI) of patients with autism spectrum disorder (ASD)? Although a few brain regions have been somehow implicated in the pathophysiologic mechanism of the disorder, the gold-standard for diagnosis based on sMRI has not been reached in the academic community. Recently, the powerful deep learning algorithms have been widely studied and applied, which provides a chance to explore the brain structural abnormalities of ASD by the visualization based on the deep learning model. In this paper, a 3D-ResNet with an attention subnet for ASD classification is proposed. The model combined the residual module and the attention subnet to mask the regions which are relevant or irrelevant to the classification during the feature extraction. The model was trained and tested by sMRI from Autism Brain Imaging Data Exchange (ABIDE). The result of 5-fold cross-validation shows an accuracy of 75%. The Grad-CAM was further applied to display the emphasized composition of the model during classification. The class activation mapping of multiple slices of the representation sMRI was visualized. The results show that there are high related signals in the regions near the hippocampus, corpus callosum, thalamus, and amygdala. This result may confirm some of the previous hypotheses. The work is not only limited to the classification of ASD but also attempts to explore the anatomic abnormality with a quite promising visualization-based deep learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
1秒前
wanci应助黑土采纳,获得10
1秒前
2秒前
2秒前
3秒前
zjl1112发布了新的文献求助10
4秒前
4秒前
5秒前
wanci应助柔弱的不尤采纳,获得10
5秒前
菜狗完成签到,获得积分10
5秒前
6秒前
花花完成签到,获得积分10
6秒前
7秒前
研友_VZG7GZ应助研友_nPoWNL采纳,获得10
7秒前
7秒前
7秒前
动漫大师发布了新的文献求助10
9秒前
科研通AI5应助xiixix采纳,获得10
10秒前
10秒前
菜狗发布了新的文献求助10
11秒前
tianhaoshan发布了新的文献求助10
11秒前
xmhxpz发布了新的文献求助10
13秒前
14秒前
谷高高完成签到 ,获得积分10
14秒前
吴陈发布了新的文献求助10
14秒前
zjl1112完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
飞龙在天完成签到,获得积分10
17秒前
脑洞疼应助张豪杰采纳,获得10
18秒前
19秒前
cos119发布了新的文献求助30
20秒前
你好发布了新的文献求助10
20秒前
20秒前
444发布了新的文献求助10
21秒前
SciGPT应助Hiker采纳,获得10
21秒前
21秒前
大腚疯猪应助lijiaxin采纳,获得20
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150