Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network

物理 粒子图像测速 粒子跟踪测速 湍流 流动可视化 矢量场 涡流 跟踪(教育) 质点速度 经典力学 流量(数学) 光学 机械 心理学 教育学
作者
Hongping Wang,Yi Liu,Shizhao Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (1) 被引量:125
标识
DOI:10.1063/5.0078143
摘要

The velocities measured by particle image velocimetry (PIV) and particle tracking velocimetry (PTV) commonly provide sparse information on flow motions. A dense velocity field with high resolution is indispensable for data visualization and analysis. In the present work, a physics-informed neural network (PINN) is proposed to reconstruct the dense velocity field from sparse experimental data. A PINN is a network-based data assimilation method. Within the PINN, both the velocity and pressure are approximated by minimizing a loss function consisting of the residuals of the data and the Navier–Stokes equations. Therefore, the PINN can not only improve the velocity resolution but also predict the pressure field. The performance of the PINN is investigated using two-dimensional (2D) Taylor's decaying vortices and turbulent channel flow with and without measurement noise. For the case of 2D Taylor's decaying vortices, the activation functions, optimization algorithms, and some parameters of the proposed method are assessed. For the case of turbulent channel flow, the ability of the PINN to reconstruct wall-bounded turbulence is explored. Finally, the PINN is applied to reconstruct dense velocity fields from the experimental tomographic PIV (Tomo-PIV) velocity in the three-dimensional wake flow of a hemisphere. The results indicate that the proposed PINN has great potential for extending the capabilities of PIV/PTV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助ayan采纳,获得10
刚刚
科研通AI5应助FANPP采纳,获得10
2秒前
uupp完成签到,获得积分10
2秒前
李秀林发布了新的文献求助10
2秒前
鲸落发布了新的文献求助10
2秒前
gc发布了新的文献求助10
2秒前
泥花完成签到,获得积分10
2秒前
3秒前
喝到几点完成签到,获得积分10
3秒前
nanlinhua发布了新的文献求助10
3秒前
3秒前
田様应助王景采纳,获得10
3秒前
下一秒微笑完成签到,获得积分10
3秒前
4秒前
4秒前
机智的著发布了新的文献求助10
4秒前
坤坤完成签到,获得积分10
5秒前
生动的鹰完成签到,获得积分10
5秒前
大方弘文完成签到,获得积分10
5秒前
不着四六的岁月完成签到,获得积分10
5秒前
小蘑菇应助喝到几点采纳,获得10
6秒前
酷波er应助葡萄味的果茶采纳,获得10
7秒前
小小杨发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
yoshiki应助科研执修采纳,获得30
10秒前
许甜甜鸭应助奥美拉采纳,获得10
10秒前
CipherSage应助11采纳,获得10
10秒前
G浅浅发布了新的文献求助10
11秒前
Jupiter完成签到,获得积分10
12秒前
aertom完成签到,获得积分10
12秒前
情怀应助机智的著采纳,获得10
12秒前
完美世界应助QQQ采纳,获得10
12秒前
满杯橙橙发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926