发光
化学
激发态
兴奋剂
光谱学
Crystal(编程语言)
掺杂剂
发射光谱
放松(心理学)
分析化学(期刊)
离子
晶体结构
镧系元素
结晶学
谱线
原子物理学
物理
凝聚态物理
光学
社会心理学
天文
量子力学
色谱法
有机化学
计算机科学
心理学
程序设计语言
作者
Fabio Piccinelli,I. Carrasco,Chong‐Geng Ma,Marco Bettinelli
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2021-05-21
卷期号:60 (11): 8259-8266
被引量:17
标识
DOI:10.1021/acs.inorgchem.1c00932
摘要
Eu3+ (1 mol %)-doped Ca2LnSbO6 (replacing Ln3+; Ln = Lu, Y, Gd, and La) and Ca2EuSbO6 were synthesized and structurally characterized by means of X-ray powder diffraction. The Eu3+ luminescence spectroscopy of the doped samples and of Ca2EuSbO6 has been carefully investigated upon collection of the excitation/emission spectra and luminescence decay curves of the main excited states. Surprisingly, apart from the dominant red emission from 5D0, all the doped samples show an uncommon blue and green emission contribution from 5DJ (J = 1, 2, and 3). This is made possible thanks to both multiphonon and cross-relaxation mechanism inefficiencies. However, the emission from 5D3 is more efficient and the decay kinetics of the 5DJ (J = 0, 1, and 2) levels is slower in the case of Y- and Lu-based doped samples. This evidence can find a possible explanation in the crystal chemistry of this family of double perovskites: our structural investigation suggests an uneven distribution of the Eu3+ dopant ions in Ca2YSbO6 and Ca2LuSbO6 hosts of the general A2BB'O6 formula. The luminescent center is mainly located in the A crystal site, and on average, the Eu-Eu distances are longer than in the case of the Gd- and La-based matrix. These longer distances can further reduce the efficiency of the cross-relaxation mechanism and, consequently, the radiative transitions are more efficient. The slower depopulation of Eu3+ 5D2 and 5D1 levels in Ca2YSbO6 and Ca2LuSbO6 hosts is reflected in the longer rise observed in the 5D1 and 5D0 decay curves, respectively. Finally, in Ca2EuSbO6, the high Eu3+ concentration gives rise to an efficient cross-relaxation within the subset of the lanthanide ions so that no emission from 5DJ (J = 1, 2, and 3) is possible and the 5D0 decay kinetics is faster than for the doped samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI