Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization

小RNA 计算机科学 相似性(几何) 非负矩阵分解 矩阵分解 疾病 图形 自编码 生物网络 理论计算机科学 计算生物学 人工智能 人工神经网络 数据挖掘 医学 生物 遗传学 病理 物理 图像(数学) 基因 特征向量 量子力学
作者
Yulian Ding,Xiujuan Lei,Bo Liao,Fang‐Xiang Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 446-457 被引量:61
标识
DOI:10.1109/jbhi.2021.3088342
摘要

MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦发布了新的文献求助10
1秒前
刘宏关注了科研通微信公众号
1秒前
1秒前
牧长一完成签到 ,获得积分0
3秒前
zheng_chen发布了新的文献求助10
4秒前
研友_VZG7GZ应助pbj采纳,获得10
4秒前
生动友绿发布了新的文献求助10
4秒前
英吉利25发布了新的文献求助10
4秒前
李健应助不知所措的咪采纳,获得10
5秒前
科研通AI5应助duduguai采纳,获得10
6秒前
8秒前
尹伊发布了新的文献求助200
8秒前
8秒前
8秒前
小敏完成签到,获得积分10
11秒前
11秒前
11秒前
sssssss发布了新的文献求助10
11秒前
汉堡包应助佑予和安采纳,获得10
12秒前
Much发布了新的文献求助10
13秒前
xiao发布了新的文献求助10
13秒前
肥肥完成签到,获得积分10
14秒前
15秒前
黄腾完成签到,获得积分10
15秒前
15秒前
Phil完成签到 ,获得积分10
15秒前
yar应助喔喔喔哦wo采纳,获得10
18秒前
19秒前
Owen应助生动友绿采纳,获得10
19秒前
19秒前
大个应助黄腾采纳,获得10
21秒前
21秒前
21秒前
21秒前
科目三应助sssssss采纳,获得10
23秒前
besatified给Sandy的求助进行了留言
25秒前
友好盼晴发布了新的文献求助10
26秒前
jeffgong完成签到,获得积分20
26秒前
刘宏发布了新的文献求助10
26秒前
ye发布了新的文献求助10
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Sustainability and the Fashion Industry 700
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066355
求助须知:如何正确求助?哪些是违规求助? 3605254
关于积分的说明 11449211
捐赠科研通 3327280
什么是DOI,文献DOI怎么找? 1829250
邀请新用户注册赠送积分活动 899215
科研通“疑难数据库(出版商)”最低求助积分说明 819502