A Working Condition Diagnosis Model of Sucker Rod Pumping Wells Based on Deep Learning

抽油杆 卷积神经网络 联营 油井 人工智能 深度学习 测功机 蜗壳 计算机科学 数据集 模式识别(心理学) 集合(抽象数据类型) 工程类 石油工程 机械工程 程序设计语言 入口
作者
Xiang Wang,Yanfeng He,Fajun Li,Zhen Wang,Xiangji Dou,Hanlin Xu,Lipei Fu
出处
期刊:SPE production & operations [Society of Petroleum Engineers]
卷期号:36 (02): 317-326 被引量:6
标识
DOI:10.2118/205015-pa
摘要

Summary Monitoring the working conditions of sucker rod pumping wells in a timely and accurate manner is important for oil production. With the development of smart oil fields, more and more sensors are installed on the well, and the monitored data are continuously transmitted to the data center to form big data. In this work, we aim to utilize the big data collected during oil well production and a deep learning technique to build a new generation of intelligent diagnosis model to monitor working condition of sucker rod pumping wells. More than 5×106 of well monitoring records, which covers information from about 1 year for more than 300 wells in an oilfield block, are collected and preprocessed. To show the dynamic changes of the working conditions for the wells, the overlay dynamometer card is proposed and plotted for each data record. The working conditions are divided into 30 types, and the corresponding data set is created. An intelligent diagnosis model using the convolutional neural network (CNN), one of the deep learning frameworks, is proposed. By the convolution and pooling operation, the CNN can extract features of an image implicitly without human effort and prior knowledge. That makes a CNN very suitable for the recognition of the overlay dynamometer cards. The architecture for a working condition diagnosis CNN model is designed. The CNN model consists of 14 layers with six convolutional layers, three pooling layers, and three fully connected layers. The total number of neurons is more than 1.7×106. The overlay dynamometer card data set is used to train and validate the CNN model. The accuracy and efficiency of the model are evaluated. Both the training and validation accuracies of the CNN model are greater than 99% after 10 training epochs. The average training elapsed time for an epoch is 8909.5 seconds, and the average time to diagnosis a sample is 1.3 milliseconds. Based on the trained CNN model, a working condition monitoring software for a sucker rod pumping well is developed. The software runs 7 × 24 hours to diagnosis the working conditions of wells and post a warning to users. It also has a feedback learning workflow to update the CNN model regularly to improve its performance. The on-site run shows that the actual accuracy of the CNN model is greater than 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助珺儿采纳,获得10
1秒前
1秒前
1秒前
三三完成签到,获得积分10
3秒前
4秒前
橙鹿鹿的猫完成签到,获得积分10
4秒前
天天快乐应助Derik采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
胡图图完成签到,获得积分10
4秒前
4秒前
5秒前
Racheal发布了新的文献求助10
5秒前
牟弼完成签到,获得积分10
5秒前
小龙发布了新的文献求助10
5秒前
fengmian完成签到,获得积分10
6秒前
么么叽发布了新的文献求助10
9秒前
10秒前
10秒前
冰魂应助123采纳,获得30
10秒前
冰魂应助默默的彩虹采纳,获得30
11秒前
美满的机器猫完成签到,获得积分10
12秒前
13秒前
研友_VZG7GZ应助liz采纳,获得10
13秒前
13秒前
14秒前
汉堡包应助小冰采纳,获得10
14秒前
Hehehehe发布了新的文献求助10
14秒前
我是老大应助江维维豆奶采纳,获得10
14秒前
风见雪言完成签到,获得积分10
14秒前
xuexi应助Djdidn采纳,获得10
15秒前
coolkid应助爱尚采纳,获得10
15秒前
欧阳发布了新的文献求助10
15秒前
15秒前
Asdaf完成签到,获得积分10
15秒前
八度浮发布了新的文献求助10
16秒前
彭于彦祖应助王智勇采纳,获得10
16秒前
16秒前
16秒前
17秒前
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861608
求助须知:如何正确求助?哪些是违规求助? 3404020
关于积分的说明 10637676
捐赠科研通 3127156
什么是DOI,文献DOI怎么找? 1724551
邀请新用户注册赠送积分活动 830510
科研通“疑难数据库(出版商)”最低求助积分说明 779220