Joint Knowledge Pruning and Recurrent Graph Convolution for News Recommendation

计算机科学 图形 情报检索 修剪 代表(政治) 理论计算机科学 推荐系统 人工智能 农学 政治学 生物 政治 法学
作者
Yu Tian,Yang Yuhao,Xudong Ren,Pengfei Wang,Fangzhao Wu,Qian Wang,Chenliang Li
标识
DOI:10.1145/3404835.3462912
摘要

Recently, exploiting a knowledge graph (KG) to enrich the semantic representation of a news article have been proven to be effective for news recommendation. These solutions focus on the representation learning for news articles with additional information in the knowledge graph, where the user representations are mainly derived based on these news representations later. However, different users would hold different interests on the same news article. In other words, directly identifying the entities relevant to the user's interest and deriving the resultant user representation could enable a better news recommendation and explanation. To this end, in this paper, we propose a novel knowledge pruning based recurrent graph convolutional network (named Kopra) for news recommendation. Instead of extracting relevant entities for a news article from KG, Kopra is devised to identify the relevant entities from both a user's clicked history and a KG to derive the user representation. We firstly form an initial entity graph (namely interest graph) with seed entities extracted from news titles and abstracts. Then, a joint knowledge pruning and recurrent graph convolution (RGC) mechanism is introduced to augment each seed entity with relevant entities from KG in a recurrent manner. That is, the entities in the neighborhood of each seed entity inside KG but irrelevant to the user's interest are pruned from the augmentation. With this pruning and graph convolution process in a recurrent manner, we can derive the user's both long- and short-term representations based on her click history within a long and short time period respectively. At last, we introduce a max-pooling predictor over the long- and short-term user representations and the seed entities in the candidate news to calculate the ranking score for recommendation. The experimental results over two real-world datasets in two different languages suggest that the proposed Kopra obtains significantly better performance than a series of state-of-the-art technical alternatives. Moreover, the entity graph generated by Kopra can facilitate recommendation explanation much easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
HL发布了新的文献求助10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
Jack应助科研通管家采纳,获得50
1秒前
聪慧夜柳完成签到 ,获得积分20
2秒前
俭朴的寇完成签到,获得积分10
2秒前
hlx年少发布了新的文献求助10
4秒前
NexusExplorer应助意安采纳,获得10
4秒前
叶萧辰发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI5应助白菜采纳,获得10
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
吴彦祖发布了新的文献求助10
8秒前
8秒前
王睿发布了新的文献求助10
9秒前
9秒前
废废废发布了新的文献求助10
10秒前
李荣航发布了新的文献求助10
11秒前
王军鹏发布了新的文献求助10
11秒前
lierikafei发布了新的文献求助10
11秒前
科研通AI2S应助猪猪hero采纳,获得10
11秒前
12秒前
钙离子发布了新的文献求助10
13秒前
寻北意完成签到,获得积分10
14秒前
聪慧夜柳发布了新的文献求助10
15秒前
15秒前
15秒前
kangshuai完成签到,获得积分10
16秒前
16秒前
嘻哈发布了新的文献求助10
17秒前
17秒前
大个应助cldg采纳,获得10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635