摩擦电效应
纳米发生器
可持续农业
温室
环境友好型
农业
聚乳酸
农业工程
材料科学
纳米技术
生化工程
工程类
农学
电气工程
生态学
复合材料
生物
电压
聚合物
作者
Chengmei Jiang,Qi Zhang,Chengxin He,Chi Zhang,Xiaohui Feng,Xunjia Li,Qiang Zhao,Yibin Ying,Jianfeng Ping
标识
DOI:10.1016/j.fmre.2021.09.010
摘要
As the use of triboelectric nanogenerators (TENGs) increases, the generation of related electronic waste has been a major challenge. Therefore, the development of environmentally friendly, biodegradable, and low-cost TENGs must be prioritized. Having discovered that plant proteins, by-products of grain processing, possess excellent triboelectric properties, we explore these properties by evaluating the protein structure. The proteins are recycled to fabricate triboelectric layers, and the triboelectric series according to electrical properties is determined for the first time. Using a special structure design, we construct a plant-protein-enabled biodegradable TENG by integrating a polylactic acid film, which is used as a new type of mulch film to construct a growth-promoting system that generates space electric fields for agriculture. Thus, from the plant protein to the crop, a sustainable recycling loop is implemented. Using bean seedlings as a model to confirm the feasibility of the mulch film, we further use it in the cultivation of greenhouse vegetables. Experimental results demonstrate the applicability of the proposed plant-protein-enabled biodegradable TENG in sustainable agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI