已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for bone marrow cell detection and classification on whole-slide images

深度学习 计算机科学 人工智能 放大倍数 骨髓 图像拼接 模式识别(心理学) 鉴定(生物学) 细胞计数 感兴趣区域 病理 细胞 医学 生物 细胞周期 遗传学 植物
作者
Ching‐Wei Wang,Sheng-Chuan Huang,Yu‐Ching Lee,Yujie Shen,Shwu-Ing Meng,Jeff L. Gaol
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102270-102270 被引量:96
标识
DOI:10.1016/j.media.2021.102270
摘要

Bone marrow (BM) examination is an essential step in both diagnosing and managing numerous hematologic disorders. BM nucleated differential count (NDC) analysis, as part of BM examination, holds the most fundamental and crucial information. However, there are many challenges to perform automated BM NDC analysis on whole-slide images (WSIs), including large dimensions of data to process, complicated cell types with subtle differences. To the authors best knowledge, this is the first study on fully automatic BM NDC using WSIs with 40x objective magnification, which can replace traditional manual counting relying on light microscopy via oil-immersion 100x objective lens with a total 1000x magnification. In this study, we develop an efficient and fully automatic hierarchical deep learning framework for BM NDC WSI analysis in seconds. The proposed hierarchical framework consists of (1) a deep learning model for rapid localization of BM particles and cellular trails generating regions of interest (ROI) for further analysis, (2) a patch-based deep learning model for cell identification of 16 cell types, including megakaryocytes, mitotic cells, and four stages of erythroblasts which have not been demonstrated in previous studies before, and (3) a fast stitching model for integrating patch-based results and producing final outputs. In evaluation, the proposed method is firstly tested on a dataset with a total of 12,426 annotated cells using cross validation, achieving high recall and accuracy of 0.905 ± 0.078 and 0.989 ± 0.006, respectively, and taking only 44 seconds to perform BM NDC analysis for a WSI. To further examine the generalizability of our model, we conduct an evaluation on the second independent dataset with a total of 3005 cells, and the results show that the proposed method also obtains high recall and accuracy of 0.842 and 0.988, respectively. In comparison with the existing small-image-based benchmark methods, the proposed method demonstrates superior performance in recall, accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nico发布了新的文献求助10
1秒前
Ken完成签到,获得积分10
1秒前
馆长应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
馆长应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
3秒前
馆长应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
馆长应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
YiXianCoA完成签到 ,获得积分10
9秒前
12秒前
ll完成签到 ,获得积分10
14秒前
无名子完成签到 ,获得积分10
15秒前
17秒前
我爱学习发布了新的文献求助10
17秒前
天天快乐应助mingjing采纳,获得10
18秒前
领导范儿应助凯撒采纳,获得10
19秒前
Li梨发布了新的文献求助10
24秒前
jennawu完成签到 ,获得积分10
24秒前
26秒前
26秒前
27秒前
打打应助英俊的怀曼采纳,获得10
28秒前
31秒前
打打应助摸鱼真君采纳,获得10
31秒前
ding应助Li梨采纳,获得10
32秒前
凯撒发布了新的文献求助10
32秒前
33秒前
111完成签到 ,获得积分10
37秒前
xiaomaxia发布了新的文献求助10
38秒前
42秒前
柳行天完成签到 ,获得积分10
44秒前
xiaomaxia完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973215
求助须知:如何正确求助?哪些是违规求助? 4228914
关于积分的说明 13171491
捐赠科研通 4017474
什么是DOI,文献DOI怎么找? 2198338
邀请新用户注册赠送积分活动 1211094
关于科研通互助平台的介绍 1125883