已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for bone marrow cell detection and classification on whole-slide images

深度学习 计算机科学 人工智能 放大倍数 骨髓 图像拼接 模式识别(心理学) 鉴定(生物学) 细胞计数 感兴趣区域 病理 细胞 医学 生物 细胞周期 遗传学 植物
作者
Ching‐Wei Wang,Sheng-Chuan Huang,Yu‐Ching Lee,Yujie Shen,Shwu-Ing Meng,Jeff L. Gaol
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102270-102270 被引量:93
标识
DOI:10.1016/j.media.2021.102270
摘要

Bone marrow (BM) examination is an essential step in both diagnosing and managing numerous hematologic disorders. BM nucleated differential count (NDC) analysis, as part of BM examination, holds the most fundamental and crucial information. However, there are many challenges to perform automated BM NDC analysis on whole-slide images (WSIs), including large dimensions of data to process, complicated cell types with subtle differences. To the authors best knowledge, this is the first study on fully automatic BM NDC using WSIs with 40x objective magnification, which can replace traditional manual counting relying on light microscopy via oil-immersion 100x objective lens with a total 1000x magnification. In this study, we develop an efficient and fully automatic hierarchical deep learning framework for BM NDC WSI analysis in seconds. The proposed hierarchical framework consists of (1) a deep learning model for rapid localization of BM particles and cellular trails generating regions of interest (ROI) for further analysis, (2) a patch-based deep learning model for cell identification of 16 cell types, including megakaryocytes, mitotic cells, and four stages of erythroblasts which have not been demonstrated in previous studies before, and (3) a fast stitching model for integrating patch-based results and producing final outputs. In evaluation, the proposed method is firstly tested on a dataset with a total of 12,426 annotated cells using cross validation, achieving high recall and accuracy of 0.905 ± 0.078 and 0.989 ± 0.006, respectively, and taking only 44 seconds to perform BM NDC analysis for a WSI. To further examine the generalizability of our model, we conduct an evaluation on the second independent dataset with a total of 3005 cells, and the results show that the proposed method also obtains high recall and accuracy of 0.842 and 0.988, respectively. In comparison with the existing small-image-based benchmark methods, the proposed method demonstrates superior performance in recall, accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
indigo发布了新的文献求助10
6秒前
萝卜特乐完成签到,获得积分10
11秒前
阿四辣酱完成签到,获得积分10
12秒前
15秒前
山火发布了新的文献求助10
15秒前
Jeffery发布了新的文献求助10
20秒前
zx完成签到,获得积分10
22秒前
华仔应助山火采纳,获得10
25秒前
直率的钢铁侠完成签到,获得积分10
26秒前
27秒前
iNk应助可爱的彩虹采纳,获得20
29秒前
30秒前
CipherSage应助小巧的可仁采纳,获得10
30秒前
科研通AI5应助小巧的可仁采纳,获得10
30秒前
30秒前
30秒前
jrxjzy完成签到 ,获得积分10
30秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得30
31秒前
liuliuliu完成签到 ,获得积分10
31秒前
科研通AI5应助健忘幻儿采纳,获得10
34秒前
麦克完成签到,获得积分10
34秒前
王森发布了新的文献求助10
37秒前
38秒前
ick558完成签到,获得积分10
39秒前
39秒前
王森完成签到,获得积分20
43秒前
点点发布了新的文献求助10
44秒前
48秒前
现代的擎苍完成签到,获得积分10
55秒前
56秒前
耐斯糖完成签到 ,获得积分10
57秒前
58秒前
dandna完成签到 ,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219180
捐赠科研通 3039653
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467