亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Covariate adjustment in subgroup analyses of randomized clinical trials: A propensity score approach

协变量 倾向得分匹配 统计 子群分析 数学 随机对照试验 荟萃分析 医学 内科学
作者
Siyun Yang,Fan Li,Laine Thomas,Fan Li
出处
期刊:Clinical Trials [SAGE Publishing]
卷期号:18 (5): 570-581 被引量:11
标识
DOI:10.1177/17407745211028588
摘要

Background: Subgroup analyses are frequently conducted in randomized clinical trials to assess evidence of heterogeneous treatment effect across patient subpopulations. Although randomization balances covariates within subgroups in expectation, chance imbalance may be amplified in small subgroups and adversely impact the precision of subgroup analyses. Covariate adjustment in overall analysis of randomized clinical trial is often conducted, via either analysis of covariance or propensity score weighting, but covariate adjustment for subgroup analysis has been rarely discussed. In this article, we develop propensity score weighting methodology for covariate adjustment to improve the precision and power of subgroup analyses in randomized clinical trials. Methods: We extend the propensity score weighting methodology to subgroup analyses by fitting a logistic regression propensity model with pre-specified covariate–subgroup interactions. We show that, by construction, overlap weighting exactly balances the covariates with interaction terms in each subgroup. Extensive simulations were performed to compare the operating characteristics of unadjusted estimator, different propensity score weighting estimators and the analysis of covariance estimator. We apply these methods to the Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training trial to evaluate the effect of exercise training on 6-min walk test in several pre-specified subgroups. Results: Standard errors of the adjusted estimators are smaller than those of the unadjusted estimator. The propensity score weighting estimator is as efficient as analysis of covariance, and is often more efficient when subgroup sample size is small (e.g. <125), and/or when outcome model is misspecified. The weighting estimators with full-interaction propensity model consistently outperform the standard main-effect propensity model. Conclusion: Propensity score weighting is a transparent and objective method to adjust chance imbalance of important covariates in subgroup analyses of randomized clinical trials. It is crucial to include the full covariate–subgroup interactions in the propensity score model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张子捷发布了新的文献求助10
4秒前
发呆员发布了新的文献求助10
7秒前
张子捷完成签到,获得积分10
14秒前
发呆员完成签到,获得积分20
26秒前
29秒前
36秒前
星辰大海应助计划采纳,获得10
1分钟前
XL神放完成签到 ,获得积分10
1分钟前
1分钟前
计划发布了新的文献求助10
1分钟前
1分钟前
1分钟前
会飞的蜗牛完成签到,获得积分10
1分钟前
1分钟前
津津发布了新的文献求助10
2分钟前
科研通AI6应助津津采纳,获得10
2分钟前
lina完成签到 ,获得积分10
4分钟前
MchemG完成签到,获得积分0
5分钟前
夏轩完成签到,获得积分20
6分钟前
Hello应助Mockingjay采纳,获得10
6分钟前
夏轩发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科目三应助马敬丽采纳,获得10
6分钟前
夏轩发布了新的文献求助10
6分钟前
JamesPei应助Magali采纳,获得10
6分钟前
6分钟前
叶xr完成签到 ,获得积分10
6分钟前
马敬丽发布了新的文献求助10
6分钟前
eily完成签到 ,获得积分10
6分钟前
夏轩发布了新的文献求助10
6分钟前
7分钟前
7分钟前
津津发布了新的文献求助10
7分钟前
7分钟前
Magali发布了新的文献求助10
7分钟前
科研通AI5应助津津采纳,获得30
7分钟前
8分钟前
津津发布了新的文献求助30
8分钟前
8分钟前
Magali发布了新的文献求助30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4376759
求助须知:如何正确求助?哪些是违规求助? 3872547
关于积分的说明 12067968
捐赠科研通 3515641
什么是DOI,文献DOI怎么找? 1929196
邀请新用户注册赠送积分活动 970832
科研通“疑难数据库(出版商)”最低求助积分说明 869511