Implicit Surface Reconstruction via RBF Interpolation: A Review

径向基函数 插值(计算机图形学) 层次RBF 曲面重建 曲面(拓扑) 平滑度 点云 计算 算法 基函数 基础(线性代数) 埃尔米特插值 计算机科学 数学 应用数学 数学优化 人工智能 赫米特多项式 几何学 数学分析 人工神经网络 运动(物理)
作者
Huahao Shou,Jiahui Mo,Wei Chen
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:16 (5) 被引量:2
标识
DOI:10.2174/1872212115666210707110903
摘要

Background: Implicit surface is a kind of surface modeling tool, which is widely used in point cloud reconstruction, deformation and fusion due to its advantages of good smoothness and Boolean operation. The most typical method is the surface reconstruction with Radial Basis Functions (RBF) under normal constraints. RBF has become one of the main methods of point cloud fitting because it has a strong mathematical foundation, an advantage of computation simplicity, and the ability of processing nonuniform points. Objective: Techniques and patents of implicit surface reconstruction interpolation with RBF are surveyed. Theory, algorithm, and application are discussed to provide a comprehensive summary for implicit surface reconstruction in RBF and Hermite Radial Basis Functions (HRBF) interpolation. Methods: RBF implicit surface reconstruction interpolation can be divided into RBF interpolation under the constraints of points and HRBF interpolation under the constraints of points and corresponding normals. Results: A total of 125 articles were reviewed, in which more than 30% were related to RBF in the last decade. The continuity properties and application fields of the popular global supported radial basis functions and compactly supported radial basis functions are analyzed. Different methods of RBF and HRBF implicit surface reconstruction are evaluated, and the challenges of these methods are discussed. Conclusion: In future work, implicit surface reconstruction via RBF and HRBF should be further studied in fitting accuracy, computation speed, and other fundamental problems. In addition, it is a more challenging but valuable research direction to construct a new RBF with both compact support and improved fitting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
827584450应助楚阔采纳,获得10
刚刚
共享精神应助羊与布克采纳,获得10
1秒前
852应助Ytgl采纳,获得10
2秒前
4秒前
4秒前
爆米花应助XG采纳,获得10
6秒前
小云完成签到,获得积分10
6秒前
雨琴完成签到,获得积分10
7秒前
8秒前
9秒前
木木彡发布了新的文献求助10
10秒前
JamesPei应助北辰采纳,获得10
10秒前
都市隶人发布了新的文献求助10
11秒前
11秒前
王佳豪发布了新的文献求助10
12秒前
清爽老九应助qin123采纳,获得10
13秒前
13秒前
Orange应助阿渺采纳,获得10
14秒前
打打应助小云采纳,获得10
14秒前
奇迹的山完成签到,获得积分10
15秒前
一颗苹果发布了新的文献求助10
15秒前
Makarena发布了新的文献求助10
16秒前
16秒前
马紫蓝发布了新的文献求助10
16秒前
爆米花应助迅速的八宝粥采纳,获得10
17秒前
Bruce完成签到,获得积分10
17秒前
羊与布克发布了新的文献求助10
20秒前
20秒前
李一完成签到 ,获得积分10
21秒前
会放电的皮卡丘完成签到,获得积分10
23秒前
Makarena完成签到,获得积分10
24秒前
木木彡完成签到,获得积分10
26秒前
Zz发布了新的文献求助10
26秒前
老实冰薇完成签到,获得积分10
26秒前
Ray完成签到,获得积分10
26秒前
27秒前
28秒前
今后应助霜月十四采纳,获得10
28秒前
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780560
求助须知:如何正确求助?哪些是违规求助? 3326076
关于积分的说明 10225366
捐赠科研通 3041143
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799024
科研通“疑难数据库(出版商)”最低求助积分说明 758669