The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating

催化作用 氮氧化物 热液循环 吸附 选择性催化还原 化学工程 涂层 材料科学 无机化学 化学 纳米技术 物理化学 有机化学 燃烧 工程类
作者
Zihao Fu,Guodong Zhang,Weiliang Han,Zhicheng Tang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:426: 131334-131334 被引量:54
标识
DOI:10.1016/j.cej.2021.131334
摘要

The Mn-based catalyst with hollow spherical structure was prepared by hydrothermal method and used for selective catalytic reduction (SCR) of NO with NH3. Mn-based catalysts exhibit excellent de-NOx performance at low-temperature, but narrow operating temperature window and poor water resistance restrict its application. Effectively expanding the operating temperature window and improving the H2O resistance of the Mn-based catalyst are the keys to industrial application. In this article, the H-MnO2 catalyst was prepared by hydrothermal method and modified by kinetic adsorption and vapor deposition methods. The TiO2 layer can effectively limit the excessive redox performance and improve the acidity of the catalyst surface, the NO conversion above 90% at 140–380 °C of H-MnO2@TiO2 catalyst. The phenyltrimethoxysilane was deposited on the surface of the H-MnO2@TiO2 catalyst by vapor deposition method. The NO conversion rate of the H-MnO2@TiO2@HL catalyst exceeds 80% in the temperature range of 180–380 °C. When the H2O was introduced, the NO conversion rate increases from 70% to 85% at 180 °C. The in situ DRIFTs results showed NH3 and NO could be adsorbed and activated on the catalyst surface, and the catalytic reaction follows Langmuir-Hinshelwood (L-H) mechanism. Under the presence of H2O, the NH4+ bonding to Brønsted acid sites were inhibited but the NH3 bonding to Lewis acid site was almost unaffected. In summary, through two-step modification, the operating temperature window and water resistance of Mn-based catalysts are effectively improved. It can be seen that a reasonable structure design can effectively improve the comprehensive performance of the catalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助哈哈队长2号采纳,获得10
2秒前
星期八完成签到,获得积分10
2秒前
称心语风完成签到 ,获得积分10
2秒前
paopao发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
3秒前
4秒前
ll200207发布了新的文献求助10
4秒前
时倾完成签到 ,获得积分20
5秒前
Lumos发布了新的文献求助10
6秒前
我是你爹完成签到,获得积分10
6秒前
tann发布了新的文献求助10
6秒前
6秒前
7秒前
Owen应助gfbh采纳,获得30
8秒前
8秒前
9秒前
鲜于之玉完成签到,获得积分10
9秒前
10秒前
jack应助周周采纳,获得20
11秒前
12秒前
嘿嘿嘿发布了新的文献求助10
12秒前
wanci应助科研通管家采纳,获得10
13秒前
Lucas应助Lumos采纳,获得10
13秒前
区区应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
dian应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
june发布了新的文献求助10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
Behappy发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917