Deep learning approach to assess damage mechanics of bone tissue

学习迁移 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 可视化 模式识别(心理学) 支持向量机 分类
作者
Sabrina C. Shen,Marta Peña Fernández,Gianluca Tozzi,Markus J. Buehler
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier BV]
卷期号:123: 104761-104761 被引量:35
标识
DOI:10.1016/j.jmbbm.2021.104761
摘要

Machine learning methods have the potential to transform imaging techniques and analysis for healthcare applications with automation, making diagnostics and treatment more accurate and efficient, as well as to provide mechanistic insights into tissue deformation and fracture in physiological and pathological conditions. Here we report an exploratory investigation for the classification and prediction of mechanical states of cortical and trabecular bone tissue using convolutional neural networks (CNNs), residual neural networks (ResNet), and transfer learning applied to a novel dataset derived from high-resolution synchrotron-radiation micro-computed tomography (SR-microCT) images acquired in uniaxial continuous compression in situ. We present the systematic optimization of CNN architectures for classification of this dataset, visualization of class-defining features detected by the CNNs using gradient class activation maps (Grad-CAMs), comparison of CNN performance with ResNet and transfer learning models, and perhaps most critically, the challenges that arose from applying machine learning methods to an experimentally-derived dataset for the first time. With optimized CNN architectures, we obtained trained models that classified novel images between failed and pristine classes with over 98% accuracy for cortical bone and over 90% accuracy for trabecular bone. Harnessing a pre-trained ResNet with transfer learning, we further achieved over 98% accuracy on the cortical dataset, and 99% on the trabecular dataset. This demonstrates that powerful classifiers for high-resolution SR-microCT images can be developed even with few unique training samples and invites further development through the inclusion of more data and training methods to move towards novel, fundamental, and machine learning-driven insights into microstructural states and properties of bone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WRL应助卧镁铀钳采纳,获得10
刚刚
大方泥猴桃完成签到,获得积分10
1秒前
小稻草人发布了新的文献求助30
1秒前
2秒前
科研通AI5应助dark采纳,获得10
3秒前
xuxuxuxuxu发布了新的文献求助10
3秒前
明亮的翠风完成签到,获得积分10
3秒前
小刘完成签到,获得积分10
4秒前
ding应助Perrylin718采纳,获得10
4秒前
4秒前
开放世界完成签到,获得积分10
5秒前
5秒前
Owen应助klkl采纳,获得30
5秒前
5秒前
5秒前
5秒前
6秒前
科目三应助坦率道之采纳,获得10
6秒前
健忘的鸭子完成签到,获得积分10
6秒前
无事小神仙完成签到 ,获得积分10
8秒前
情怀应助xuxuxuxuxu采纳,获得10
8秒前
Owen应助按时下班采纳,获得10
8秒前
短短长又长完成签到,获得积分20
8秒前
luo完成签到,获得积分10
9秒前
9秒前
9秒前
lgs1412发布了新的文献求助10
9秒前
广州东站发布了新的文献求助10
10秒前
10秒前
TT完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
Spiderman完成签到,获得积分10
12秒前
12秒前
DARKNESS完成签到,获得积分10
13秒前
庞可心完成签到,获得积分10
13秒前
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Diagnostic Pathology: Kidney Diseases 200
Advanced Micropipette Techniques for Cell Physiology 200
Encyclopedia of Ocean Sciences Third Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827705
求助须知:如何正确求助?哪些是违规求助? 3369930
关于积分的说明 10459808
捐赠科研通 3089768
什么是DOI,文献DOI怎么找? 1700053
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770318