An artificial neural tactile sensing system

触觉传感器 计算机科学 人工智能 触觉知觉 感觉系统 触觉辨别 机器人学 信号(编程语言) 人造皮肤 模式识别(心理学) 感知 计算机视觉 神经科学 生物医学工程 机器人 工程类 体感系统 生物 程序设计语言
作者
Sungwoo Chun,Jong-Seok Kim,Yongsang Yoo,Young In Choi,Sung Jun Jung,Dong‐Pyo Jang,Gwangyeob Lee,Kang‐Il Song,Kum Seok Nam,Inchan Youn,Donghee Son,Changhyun Pang,Yong Jeong,Hachul Jung,Young‐Jin Kim,Byong‐Deok Choi,Jae‐Hun Kim,Sung-Phil Kim,Wanjun Park,Seongjun Park
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:4 (6): 429-438 被引量:288
标识
DOI:10.1038/s41928-021-00585-x
摘要

Humans detect tactile stimuli through a combination of pressure and vibration signals using different types of cutaneous receptor. The development of artificial tactile perception systems is of interest in the development of robotics and prosthetics, and artificial receptors, nerves and skin have been created. However, constructing systems with human-like capabilities remains challenging. Here, we report an artificial neural tactile skin system that mimics the human tactile recognition process using particle-based polymer composite sensors and a signal-converting system. The sensors respond to pressure and vibration selectively, similarly to slow adaptive and fast adaptive mechanoreceptors in human skin, and can generate sensory neuron-like output signal patterns. We show in an ex vivo test that undistorted transmission of the output signals through an afferent tactile mouse nerve fibre is possible, and in an in vivo test that the signals can stimulate a rat motor nerve to induce the contraction of a hindlimb muscle. We use our tactile sensing system to develop an artificial finger that can learn to classify fine and complex textures by integrating the sensor signals with a deep learning technique. The approach can also be used to predict unknown textures on the basis of the trained model. A tactile sensing system that can learn to identify different types of surface can be created using sensors that mimic the fast and slow responses of mechanoreceptors found in human skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助dennisysz采纳,获得10
5秒前
斯文败类应助dennisysz采纳,获得10
5秒前
Hello应助dennisysz采纳,获得10
5秒前
CodeCraft应助dennisysz采纳,获得10
5秒前
7秒前
研友_nV21Vn完成签到,获得积分10
10秒前
melenda完成签到,获得积分10
11秒前
莉莉娅89发布了新的文献求助10
11秒前
SciGPT应助dennisysz采纳,获得30
12秒前
彭于晏应助dennisysz采纳,获得10
12秒前
桐桐应助dennisysz采纳,获得10
12秒前
桐桐应助dennisysz采纳,获得10
12秒前
ding应助dennisysz采纳,获得10
12秒前
Ava应助dennisysz采纳,获得10
12秒前
NexusExplorer应助dennisysz采纳,获得10
12秒前
研友_VZG7GZ应助dennisysz采纳,获得10
12秒前
科目三应助dennisysz采纳,获得10
12秒前
酷波er应助dennisysz采纳,获得10
12秒前
17秒前
刘玉梅完成签到,获得积分10
18秒前
vffg完成签到,获得积分10
18秒前
CodeCraft应助dennisysz采纳,获得10
19秒前
在水一方应助dennisysz采纳,获得10
19秒前
华仔应助dennisysz采纳,获得10
19秒前
19秒前
乐乐应助dennisysz采纳,获得10
19秒前
在水一方应助dennisysz采纳,获得10
19秒前
桐桐应助dennisysz采纳,获得10
19秒前
隐形曼青应助dennisysz采纳,获得10
19秒前
酷波er应助dennisysz采纳,获得10
19秒前
斯文败类应助dennisysz采纳,获得10
19秒前
XZZH完成签到,获得积分10
20秒前
21秒前
默默忆山完成签到,获得积分10
22秒前
25秒前
river123发布了新的文献求助10
25秒前
李爱国应助dennisysz采纳,获得10
26秒前
Orange应助dennisysz采纳,获得10
26秒前
香蕉觅云应助dennisysz采纳,获得10
26秒前
华仔应助dennisysz采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133