Quality control of 3D MRSI data in glioblastoma: Can we do without the experts?

计算机科学 随机森林 胶质母细胞瘤 金标准(测试) 数据集 软件 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 核医学 数学 统计 医学 哲学 程序设计语言 癌症研究 语言学
作者
Fatima Tensaouti,Franck Desmoulin,Julia Gilhodes,E. Martin,S. Ken,Jean‐Albert Lotterie,G. Noël,G. Truc,Marie‐Pierre Sunyach,M. Charissoux,Nicolas Magné,V. Lubrano,Patrice Péran,Elizabeth Cohen‐Jonathan Moyal,Anne Laprie
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (4): 1688-1699 被引量:9
标识
DOI:10.1002/mrm.29098
摘要

Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis.Data for 25 patients, acquired prospectively in a preradiotherapy examination, were submitted to postprocessing with syngo.MR Spectro (VB40A; Siemens) or Java-based magnetic resonance user interface (jMRUI) software. A total of 28 features were extracted from each spectrum for the automatic QC. Three spectroscopists also performed manual inspections, labeling each spectrum as good or poor quality. All statistical analyses, with addressing unbalanced data, were conducted with R 3.6.1 (R Foundation for Statistical Computing; https://www.r-project.org).The random forest method classified the spectra with an area under the curve of 95.5%, sensitivity of 95.8%, and specificity of 81.7%. The most important feature for the classification was Residuum_Lipids_Versus_Fit, obtained with syngo.MR Spectro.The automatic QC method was able to distinguish between good- and poor-quality spectra, and can be used by radiation oncologists who are not spectroscopy experts. This study revealed a novel set of MRSI signal features that are closely correlated with spectral quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷酷的菲音完成签到,获得积分10
1秒前
YH完成签到,获得积分10
1秒前
FJ发布了新的文献求助10
1秒前
啥子那完成签到,获得积分10
1秒前
Gavin发布了新的文献求助10
1秒前
www完成签到,获得积分10
1秒前
凉小远完成签到,获得积分10
1秒前
2秒前
搞怪大炮完成签到 ,获得积分10
2秒前
闷油瓶发布了新的文献求助20
2秒前
2秒前
Lareina发布了新的文献求助10
2秒前
思源应助昵称被注册完了采纳,获得10
2秒前
3秒前
dong发布了新的文献求助10
3秒前
被动科研完成签到,获得积分10
3秒前
4秒前
Hello应助质延采纳,获得10
4秒前
堃kun发布了新的文献求助10
4秒前
斯文雁易发布了新的文献求助10
5秒前
TZZZ完成签到,获得积分10
5秒前
科目三应助可口可乐采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
May关闭了May文献求助
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
xj完成签到,获得积分20
5秒前
所所应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
gecko19gecko完成签到,获得积分20
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578