Scene Understanding Technology of Intelligent Customer Service Robot Based on Deep Learning

计算机科学 服务(商务) 深度学习 人工智能 服务机器人 相似性(几何) 机器人 自然语言处理 图像(数学) 经济 经济
作者
Jianfeng Zhong
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2066 (1): 012049-012049
标识
DOI:10.1088/1742-6596/2066/1/012049
摘要

Abstract As a value-added service that improves the efficiency of online customer service, customer service robots have been well received by sellers in recent years. Because the robot strives to free the customer service staff from the heavy consulting services in the past, thereby reducing the seller’s operating costs and improving the quality of online services. The purpose of this article is to study the intelligent customer service robot scene understanding technology based on deep learning. It mainly introduces some commonly used models and training methods of deep learning and the application fields of deep learning. Analyzed the problems of the traditional Encoder-Decoder framework, and introduced the chat model designed in this paper based on these problems, that is, the intelligent chat robot model (T-DLLModel) obtained by combining the neural network topic model and the deep learning language model. Conduct an independent question understanding experiment based on question retelling and a question understanding experiment combined with contextual information on the dialogue between online shopping customer service and customers. The experimental results show that when the similarity threshold is 0.4, the method achieves better results, and an F value of 0.5 is achieved. The semantic similarity calculation method proposed in this paper is better than the traditional method based on keywords and semantic information, especially when the similarity threshold increases, the recall rate of this paper is significantly better than the traditional method. The method in this article has a slightly better answer sorting effect on the real customer service dialogue data than the method based on LDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
4秒前
完美的tuzi发布了新的文献求助10
4秒前
4秒前
kyxb完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
Luv_0完成签到,获得积分10
5秒前
allan发布了新的文献求助10
6秒前
我我我完成签到,获得积分10
6秒前
研友_VZG7GZ应助周em12_采纳,获得10
6秒前
泽拉斯发布了新的文献求助10
7秒前
poijegioa发布了新的文献求助10
8秒前
瓶子君152完成签到,获得积分10
8秒前
高伟杰完成签到,获得积分10
8秒前
英俊的铭应助关尔采纳,获得10
9秒前
xh1255完成签到,获得积分10
10秒前
10秒前
11秒前
左安完成签到,获得积分10
11秒前
wanci应助allan采纳,获得10
12秒前
Rabbit完成签到 ,获得积分10
12秒前
13秒前
13秒前
完美的tuzi完成签到,获得积分20
14秒前
14秒前
奋斗的绿凝完成签到,获得积分10
14秒前
传奇3应助Taoie采纳,获得10
14秒前
阳光襄完成签到,获得积分10
14秒前
NexusExplorer应助shenglll采纳,获得20
15秒前
ding应助落后的冬寒采纳,获得10
15秒前
陈勇杰给陈勇杰的求助进行了留言
16秒前
WJM发布了新的文献求助10
16秒前
17秒前
小马甲应助bbbin采纳,获得10
17秒前
科研通AI6应助zhuann采纳,获得10
19秒前
aging00发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911