Localizing microseismic events on field data using a U-Net-based convolutional neural network trained on synthetic data

微震 震源 合成数据 计算机科学 数据集 领域(数学) 噪音(视频) 数据挖掘 卷积神经网络 集合(抽象数据类型) 人工神经网络 算法 地质学 地震学 人工智能 诱发地震 数学 图像(数学) 程序设计语言 纯数学
作者
Nicolas Vinard,Guy Drijkoningen,D. J. Verschuur
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (2): KS33-KS43 被引量:19
标识
DOI:10.1190/geo2020-0868.1
摘要

Hydraulic fracturing (HF) plays an important role when it comes to the extraction of resources in unconventional reservoirs. The microseismic activity arising during HF operations needs to be monitored to improve productivity and to make decisions about mitigation measures. Recently, deep-learning methods have been investigated to localize earthquakes given field-data waveforms as input. For optimal results, these methods require large field data sets that cover the entire region of interest. In practice, such data sets often are scarce. To overcome this shortcoming, we have initially used a (large) synthetic data set with full waveforms to train a U-Net that reconstructs the source location as a 3D Gaussian distribution. As a field data set for our study, we use data recorded during HF operations in Texas. Synthetic waveforms are modeled using a velocity model from the site that is also used for a conventional diffraction-stacking (DS) approach. To increase the U-Nets’ ability to localize seismic events, we augment the synthetic data with different techniques, including the addition of field noise. We select the best performing U-Net using 22 events that have previously been identified to be confidently localized by DS and apply that U-Net to all 1245 events. We compare our predicted locations to DS and the DS locations refined by a relative location (DSRL) method. The U-Net-based locations are better constrained in depth compared to DS and the mean hypocenter difference with respect to DSRL locations is 163 m. This indicates potential for the use of synthetic data to complement or replace field data for training. Furthermore, after training, the method returns the source locations in near real time given the full waveforms, alleviating the need to pick arrival times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
yan完成签到 ,获得积分10
6秒前
YTTT完成签到,获得积分10
6秒前
斯文败类应助Waris采纳,获得10
6秒前
leier完成签到,获得积分10
6秒前
野狗拉丽发布了新的文献求助10
7秒前
8秒前
9秒前
JamesPei应助jiayou采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
小次之山发布了新的文献求助10
11秒前
宋垚完成签到 ,获得积分10
12秒前
13秒前
CR完成签到 ,获得积分10
14秒前
14秒前
14秒前
思源应助leier采纳,获得10
14秒前
科研小贩完成签到,获得积分10
16秒前
炙热迎波发布了新的文献求助10
16秒前
大模型应助爱喝芬达采纳,获得10
16秒前
17秒前
18秒前
yrp发布了新的文献求助10
19秒前
19秒前
21秒前
嘟噜完成签到 ,获得积分10
21秒前
lili发布了新的文献求助10
22秒前
hhyhjhj完成签到,获得积分20
23秒前
24秒前
小幸丶完成签到,获得积分10
24秒前
好运来发布了新的文献求助10
24秒前
乐意李发布了新的文献求助10
25秒前
Waris发布了新的文献求助10
25秒前
25秒前
华仔应助OVERLXRD采纳,获得10
26秒前
南回发布了新的文献求助10
27秒前
无极微光应助被淹死的鱼采纳,获得20
27秒前
hh完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416958
求助须知:如何正确求助?哪些是违规求助? 4533026
关于积分的说明 14137984
捐赠科研通 4449106
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858