A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics

卷积神经网络 计算机科学 断层(地质) 人工智能 模式识别(心理学) 代表(政治) 故障检测与隔离 利用 基础(线性代数) 深度学习 执行机构 数学 地质学 政治 计算机安全 地震学 政治学 法学 几何学
作者
Yunhan Kim,Kyumin Na,Byeng D. Youn
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:167: 108575-108575 被引量:30
标识
DOI:10.1016/j.ymssp.2021.108575
摘要

This research proposes a newly designed convolutional neural network (CNN) for gearbox fault diagnostics. A conventional CNN is a deep-learning model that offers distinctive performance for analyzing two-dimensional image data. To exploit this ability, prior work has been developed using time–frequency analysis, which derives image-like data that is fed into the CNN model. However, the existing time–frequency analysis approach employs fixed basis functions that are limited in their ability to capture fault-related signals in the image. To address this challenge, we propose a health-adaptive time-scale representation (HTSR) embedded CNN (HTSR-CNN). The proposed HTSR approach is designed to exploit the concept of TSR, which is informed by the physics of the time and frequency characteristics induced by the fault-related signals. Instead of using fixed basis functions, the HTSR is constructed using multiscale convolutional filters that behave like the adaptive basis functions. These multiscale filters are effectively learned to include the enriched fault-related information in the HTSR through end-to-end learning of the HTSR-CNN model. The performance of the proposed HTSR-CNN is validated by examining two case studies: vibration signals from a two-stage spur gearbox and vibration signals from a planetary gearbox. From the case study results, the proposed HTSR-CNN method is found to have superior performance for gearbox fault diagnostics, as compared to existing CNN-based fault diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1223发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI5应助liu采纳,获得10
1秒前
重要的一凡完成签到,获得积分10
2秒前
3秒前
moon发布了新的文献求助10
3秒前
5秒前
5秒前
Casper完成签到,获得积分10
6秒前
KPJYW完成签到,获得积分10
6秒前
ZZzz发布了新的文献求助10
6秒前
王睿发布了新的文献求助10
7秒前
废废废完成签到,获得积分10
8秒前
haha完成签到,获得积分10
9秒前
浅色墨水发布了新的文献求助10
9秒前
9秒前
科研通AI5应助qcx采纳,获得10
10秒前
yuanyuan完成签到,获得积分10
11秒前
吴彦祖发布了新的文献求助10
11秒前
酷波er应助HL采纳,获得10
13秒前
Drhhhfff完成签到,获得积分10
13秒前
小二郎应助haha采纳,获得10
13秒前
ZZzz完成签到,获得积分10
13秒前
15秒前
深情安青应助小黄采纳,获得10
16秒前
17秒前
18秒前
在水一方应助moon采纳,获得10
19秒前
JamesPei应助moon采纳,获得10
19秒前
甜甜玫瑰应助moon采纳,获得10
19秒前
充电宝应助赵健明采纳,获得10
19秒前
qxy关注了科研通微信公众号
19秒前
qxy关注了科研通微信公众号
19秒前
20秒前
可爱的函函应助0099采纳,获得10
20秒前
CHyaa完成签到,获得积分10
20秒前
20秒前
21秒前
Orange应助小橙子采纳,获得10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635