Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes

光学相干层析成像 神经纤维层 青光眼 视网膜 眼科 卷积神经网络 光学相干断层摄影术 人工智能 医学 计算机科学
作者
Christopher Bowd,Akram Belghith,Linda M. Zangwill,Mark Christopher,Michael H. Goldbaum,Rui Fan,Jasmin Rezapour,Sasan Moghimi,Alireza Kamalipour,Huiyuan Hou,Robert N. Weinreb
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:236: 298-308 被引量:48
标识
DOI:10.1016/j.ajo.2021.11.008
摘要

Purpose

To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measurements and OCT retinal nerve fiber layer (RNFL) thickness measurements for classifying healthy and glaucomatous eyes.

Design

Comparison of diagnostic approaches.

Methods

A total of 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients with optic nerve head (ONH) OCTA and OCT imaging were included. Classification performance of a VGG16 CNN trained and tested on entire en face 4.5 × 4.5-mm radial peripapillary capillary OCTA ONH images was compared to the performance of separate GBC models trained and tested on standard OCTA and OCT measurements. Five-fold cross-validation was used to test predictions for CNNs and GBCs. Areas under the precision recall curves (AUPRC) were calculated to control for training/test set size imbalance and were compared.

Results

Adjusted AUPRCs for GBC models were 0.89 (95% CI = 0.82, 0.92) for whole image vessel density GBC, 0.89 (0.83, 0.92) for whole image capillary density GBC, 0.91 (0.88, 0.93) for combined whole image vessel and whole image capillary density GBC, and 0.93 (0.91, 095) for RNFL thickness GBC. The adjusted AUPRC using CNN analysis of en face vessel density images was 0.97 (0.95, 0.99) resulting in significantly improved classification compared to GBC OCTA-based results and GBC OCT-based results (P ≤ 0.01 for all comparisons).

Conclusion

Deep learning en face image analysis improves on feature-based GBC models for classifying healthy and glaucoma eyes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清欲完成签到,获得积分20
刚刚
绿豆冰完成签到,获得积分10
2秒前
海燕发布了新的文献求助10
3秒前
风行九州发布了新的文献求助10
3秒前
3秒前
星辰坠于海应助闵SUGA采纳,获得50
4秒前
5秒前
6秒前
6秒前
11发布了新的文献求助10
6秒前
7秒前
随意完成签到,获得积分10
7秒前
焦糖布丁完成签到 ,获得积分10
7秒前
酷酷的山雁完成签到,获得积分10
8秒前
顾矜应助wxr采纳,获得10
8秒前
8秒前
9秒前
zhw完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助开放向日葵采纳,获得10
10秒前
水123发布了新的文献求助10
10秒前
Aman完成签到,获得积分10
10秒前
11秒前
LILI完成签到 ,获得积分10
11秒前
11秒前
111发布了新的文献求助10
11秒前
Hello应助孤独听芹采纳,获得20
12秒前
泊凉少年发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助11采纳,获得10
13秒前
一一发布了新的文献求助10
14秒前
小熊发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
17秒前
17秒前
ll完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600339
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841190
捐赠科研通 4676319
什么是DOI,文献DOI怎么找? 2538694
邀请新用户注册赠送积分活动 1505750
关于科研通互助平台的介绍 1471186