Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides

过渡金属 物理 凝聚态物理 催化作用 化学 生物化学
作者
Lujun Huang,Alex Krasnok,Andrea Alù,Yiling Yu,Dragomir N. Neshev,Andrey E. Miroshnichenko
出处
期刊:Reports on Progress in Physics [IOP Publishing]
卷期号:85 (4): 046401-046401 被引量:138
标识
DOI:10.1088/1361-6633/ac45f9
摘要

Two dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary physical properties. The unique properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different types of van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛布慧完成签到 ,获得积分10
1秒前
善学以致用应助acc4509采纳,获得10
1秒前
2秒前
guozizi应助Tina采纳,获得30
3秒前
勤恳的茗茗完成签到,获得积分10
4秒前
liumx发布了新的文献求助10
4秒前
大意的面包完成签到 ,获得积分10
4秒前
yyjm发布了新的文献求助10
5秒前
团团发布了新的文献求助10
6秒前
6秒前
科研通AI5应助ddddd采纳,获得10
7秒前
共享精神应助Yahaha采纳,获得10
8秒前
13秒前
18离婚且带娃完成签到,获得积分10
14秒前
科研通AI5应助橙子采纳,获得10
14秒前
清脆的冰露完成签到,获得积分20
15秒前
坚强雪碧完成签到,获得积分10
15秒前
18秒前
19秒前
Livrik发布了新的文献求助10
22秒前
22秒前
24秒前
棠棠完成签到 ,获得积分10
25秒前
26秒前
26秒前
顺顺顺顺发布了新的文献求助10
27秒前
SYLH应助朱涛涛采纳,获得10
27秒前
xxxx完成签到 ,获得积分10
28秒前
28秒前
赘婿应助鲜于灵竹采纳,获得10
29秒前
姚小包子完成签到,获得积分10
30秒前
30秒前
优雅的涵瑶完成签到,获得积分10
31秒前
pinghu完成签到,获得积分10
31秒前
阳光以筠发布了新的文献求助10
31秒前
33秒前
YooM发布了新的文献求助10
34秒前
36秒前
36秒前
123发布了新的文献求助10
37秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371950
关于积分的说明 10469874
捐赠科研通 3091536
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818246
科研通“疑难数据库(出版商)”最低求助积分说明 770765