Chemical interface engineering of solid garnet batteries for long-life and high-rate performance

电解质 材料科学 阳极 化学工程 阴极 电池(电) 电化学 电极 锂(药物) 相(物质) 化学 有机化学 物理 工程类 内分泌学 物理化学 功率(物理) 医学 量子力学
作者
Weilin Huang,Zhijie Bi,Ning Zhao,Qifu Sun,Xiangxin Guo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:424: 130423-130423 被引量:31
标识
DOI:10.1016/j.cej.2021.130423
摘要

The solid garnet battery is viewed as one of the most attractive candidates for investigating the solid-state lithium batteries with high energy density and safety. However, the crucial interfacial problems between the solid electrolytes and the electrodes severely hinder the improvement of battery performance. In this work, the reactive intermediate layers are introduced in between the garnet electrolytes and the electrodes. On the anode side, the ether-based electrolyte layer is in-situ converted into a gradient solid-electrolyte-interphase (SEI) film with the organic-rich outer layer and the inorganic-rich (LiF and Li3N) inner layer, leading to the conductive contact and the homogeneous potential distribution. Consequently, the modified Li symmetric cells exhibit the dendrite-free Li plating/stripping at the remarkable current density as high as 2.1 mA cm−2 at 60 °C. On the cathode side, the ionically conducting species composed of solid-phase LiF and Li3N is in-situ formed through the decomposition of the 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-based ionic liquid layer, leading to the decreased interfacial resistance and enhanced Li+ conduction. The resultant LiNi0.6Co0.2Mn0.2O2/Li batteries with the residual liquid-phase electrolytes at the solid-phase boundaries deliver the high discharge capacity of 162.4 mAh g−1 with the capacity retention of 87.6% after 100 cycles at 0.2C and 60 °C. This work demonstrates a useful strategy to make the ideal interfaces through the in-situ conversion reactions for construction of high-performance solid garnet batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anyixx完成签到 ,获得积分10
1秒前
Dale完成签到,获得积分10
2秒前
laoji完成签到,获得积分10
2秒前
研友_8KAOBn发布了新的文献求助10
3秒前
weijiechi完成签到,获得积分10
3秒前
武广敏完成签到,获得积分10
4秒前
浩然发布了新的文献求助10
5秒前
wcuzhl发布了新的文献求助10
5秒前
6秒前
8秒前
风车车发布了新的文献求助10
9秒前
鲜艳的帅哥完成签到,获得积分10
10秒前
15秒前
16秒前
ahxb完成签到,获得积分10
17秒前
HEHNJJ完成签到,获得积分10
17秒前
19秒前
宋宋完成签到,获得积分10
19秒前
TJJ发布了新的文献求助10
19秒前
灵巧荆发布了新的文献求助10
21秒前
21秒前
nihui完成签到 ,获得积分10
21秒前
24秒前
学术混子发布了新的文献求助10
24秒前
orixero应助fandada采纳,获得10
25秒前
认真的灵竹完成签到 ,获得积分10
26秒前
27秒前
lewe发布了新的文献求助10
29秒前
执着的仇血完成签到,获得积分10
29秒前
发嗲的雨筠完成签到,获得积分10
33秒前
汉堡包应助满眼星辰采纳,获得10
34秒前
悦耳傥完成签到 ,获得积分10
34秒前
高高的山兰完成签到 ,获得积分10
34秒前
llj完成签到,获得积分20
34秒前
火星上冥茗完成签到,获得积分10
35秒前
lewe完成签到,获得积分10
35秒前
元谷雪发布了新的文献求助10
36秒前
38秒前
大模型应助小白菜采纳,获得10
38秒前
llj发布了新的文献求助10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307