Deep Hough Transform for Semantic Line Detection

霍夫变换 计算机科学 人工智能 目标检测 领域(数学分析) 参数统计 模式识别(心理学) 直线(几何图形) 计算机视觉 特征(语言学) 图像(数学) 数学 数学分析 哲学 统计 语言学 几何学
作者
Kai Zhao,Qi Han,Chang–Bin Zhang,Jun Xu,Ming‐Ming Cheng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:133
标识
DOI:10.1109/tpami.2021.3077129
摘要

We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助呆萌的正豪采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
5秒前
ALLIN完成签到,获得积分20
5秒前
泡沫完成签到 ,获得积分10
5秒前
6秒前
赘婿应助大胆的问夏采纳,获得10
6秒前
阿卫发布了新的文献求助10
7秒前
时来运转发布了新的文献求助10
7秒前
科研通AI5应助wxj采纳,获得10
7秒前
科研通AI5应助wxj采纳,获得10
7秒前
搜集达人应助可耐的乐荷采纳,获得10
7秒前
7秒前
玩命的鹤完成签到 ,获得积分10
8秒前
456发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
LHL发布了新的文献求助10
10秒前
Hello应助文静的可仁采纳,获得10
11秒前
熠迩发布了新的文献求助10
11秒前
11秒前
11秒前
三只眼小怪兽完成签到,获得积分10
12秒前
Owen应助你好这位仁兄采纳,获得10
12秒前
12秒前
FashionBoy应助ShengzhangLiu采纳,获得10
12秒前
夏夏完成签到,获得积分10
13秒前
AR完成签到,获得积分10
13秒前
jgpiao完成签到,获得积分10
13秒前
14秒前
123发布了新的文献求助10
14秒前
Hello应助闪闪凝冬采纳,获得10
14秒前
14秒前
苹果平安完成签到,获得积分10
14秒前
15秒前
dengbing2000完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831