Deep learning segmentation of major vessels in X-ray coronary angiography

分割 人工智能 冠状动脉 深度学习 计算机科学 预处理器 冠状动脉造影 血管造影 医学 放射科 狭窄 模式识别(心理学) 动脉 心脏病学 心肌梗塞
作者
Su Yang,Jihoon Kweon,Jae‐Hyung Roh,Jae‐Hwan Lee,Hee Jun Kang,Lae-Jeong Park,Dong Joon Kim,Hyeonkyeong Yang,Jaehee Hur,Do‐Yoon Kang,Pil Hyung Lee,Jung‐Min Ahn,Soo‐Jin Kang,Duk‐Woo Park,Seung‐Whan Lee,Young‐Hak Kim,Cheol Whan Lee,Seong‐Wook Park,Seung‐Jung Park
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:9 (1) 被引量:98
标识
DOI:10.1038/s41598-019-53254-7
摘要

X-ray coronary angiography is a primary imaging technique for diagnosing coronary diseases. Although quantitative coronary angiography (QCA) provides morphological information of coronary arteries with objective quantitative measures, considerable training is required to identify the target vessels and understand the tree structure of coronary arteries. Despite the use of computer-aided tools, such as the edge-detection method, manual correction is necessary for accurate segmentation of coronary vessels. In the present study, we proposed a robust method for major vessel segmentation using deep learning models with fully convolutional networks. When angiographic images of 3302 diseased major vessels from 2042 patients were tested, deep learning networks accurately identified and segmented the major vessels in X-ray coronary angiography. The average F1 score reached 0.917, and 93.7% of the images exhibited a high F1 score > 0.8. The most narrowed region at the stenosis was distinctly captured with high connectivity. Robust predictability was validated for the external dataset with different image characteristics. For major vessel segmentation, our approach demonstrated that prediction could be completed in real time with minimal image preprocessing. By applying deep learning segmentation, QCA analysis could be further automated, thereby facilitating the use of QCA-based diagnostic methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉寒梅完成签到,获得积分10
1秒前
cx发布了新的文献求助10
1秒前
乐乐应助tanzzz采纳,获得10
2秒前
Sun完成签到,获得积分10
2秒前
CodeCraft应助YangSY采纳,获得10
3秒前
勤恳缘分发布了新的文献求助10
3秒前
12123完成签到 ,获得积分10
6秒前
悲春伤秋完成签到 ,获得积分10
6秒前
小二郎应助cx采纳,获得10
8秒前
斯文无敌完成签到,获得积分10
8秒前
scott_zip完成签到 ,获得积分10
9秒前
难难难发布了新的文献求助10
9秒前
LI完成签到,获得积分10
9秒前
XL关闭了XL文献求助
9秒前
bkagyin应助yihua采纳,获得10
10秒前
gentille完成签到,获得积分10
11秒前
12秒前
13秒前
羽翼发布了新的文献求助10
14秒前
99完成签到,获得积分10
15秒前
小宋完成签到,获得积分10
16秒前
chany发布了新的文献求助10
17秒前
18秒前
20秒前
Ava应助难难难采纳,获得10
20秒前
HC完成签到 ,获得积分10
21秒前
21秒前
21秒前
Cassini发布了新的文献求助10
22秒前
22秒前
Alicia完成签到,获得积分10
23秒前
25秒前
26秒前
chany完成签到,获得积分20
26秒前
寒冷向真发布了新的文献求助10
26秒前
Drink发布了新的文献求助10
27秒前
啦啦啦123完成签到,获得积分10
27秒前
yihua发布了新的文献求助10
28秒前
负责吃饭完成签到,获得积分10
30秒前
天真的博发布了新的文献求助10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123