Ussing室
粘液
化学
并行传输
右旋糖酐
肠粘膜
药理学
体外
生物化学
体内
内科学
医学
生物
磁导率
生态学
生物技术
膜
作者
Caroline Twarog,Fiona McCartney,Sabine M. Harrison,Brigitte Illel,Elias Fattal,David J. Brayden
标识
DOI:10.1016/j.ejps.2020.105685
摘要
SNAC and C10 are intestinal permeation enhancers (PEs) used in formulations of peptides for oral delivery in clinical trials. Our aims were to compare their: (i) mechanism of action in isolated rat intestinal mucosae mounted in Ussing chambers and in non-everted gut sacs, (ii) effects on mucosa integrity in those models and also in in situ intra-jejunal instillations and (iii) interactions with intestinal mucus. SNAC increased the apparent permeability coefficient (Papp) of the paracellular marker, FITC-dextran 4000 (FD4), across isolated rat gastric mucosae in concentration-dependent fashion, whereas C10 did not, while both reduced the transepithelial electrical resistance (TEER). In isolated jejunal and colonic mucosae, both agents increased the Papp of [14C]-mannitol and FD4 whereas C10 but not SNAC reduced TEER. 20 mM SNAC was required to achieve the efficacy of 10 mM C10 in jejunal and colonic mucosae. In isolated non-everted jejunal and colonics sacs, FD4 flux increases were observed in the presence of both PEs. Histology of mucosae revealed that both PEs induced minor epithelial damage to the mucosa at concentrations that increased fluxes. Jejunal tissue withstood epithelial damage in the following order: intra jejunal in situ instillations > jejunal sacs > isolated jejunal mucosae. Both PEs modulated viscoelastic properties of porcine jejunal mucus without altering rheological properties. In conclusion, SNAC and C10 are reasonably efficacious PEs in rat intestinal tissue with common overall mechanistic features. Their potency and toxic potential are low, in agreement with clinical trial data.
科研通智能强力驱动
Strongly Powered by AbleSci AI