Convolutional Sparse Coding for Compressed Sensing CT Reconstruction

计算机科学 人工智能 迭代重建 压缩传感 神经编码 像素 计算机视觉 编码(社会科学) 模式识别(心理学) 一致性(知识库) 数学 统计
作者
Peng Bao,Huaiqiang Sun,Zhangyang Wang,Yi Zhang,Wenjun Xia,Kang Yang,Weiyan Chen,Mianyi Chen,Yan Xi,Shanzhou Niu,Jiliu Zhou,He Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2607-2619 被引量:47
标识
DOI:10.1109/tmi.2019.2906853
摘要

Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, the traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. The qualitative and quantitative results demonstrate that the proposed methods achieve better performance than the several existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助ml采纳,获得10
刚刚
1秒前
小小太阳发布了新的文献求助20
2秒前
2秒前
6秒前
Eton完成签到,获得积分10
6秒前
在水一方应助Emma采纳,获得10
6秒前
bowen发布了新的文献求助10
6秒前
8秒前
11秒前
凡人丿完成签到 ,获得积分10
13秒前
风_feng完成签到,获得积分10
13秒前
14秒前
15秒前
老陈发布了新的文献求助10
15秒前
ml完成签到,获得积分20
16秒前
星河发布了新的文献求助100
17秒前
大模型应助老陈采纳,获得10
19秒前
22秒前
23秒前
24秒前
25秒前
彩色亿先发布了新的文献求助10
26秒前
26秒前
fenghp发布了新的文献求助10
28秒前
燕燕于飞发布了新的文献求助10
29秒前
Akim应助kepler采纳,获得10
29秒前
oreo发布了新的文献求助10
30秒前
康轲发布了新的文献求助30
31秒前
科研通AI2S应助小六采纳,获得10
31秒前
年轻的馒头完成签到,获得积分10
31秒前
茶茶完成签到,获得积分10
32秒前
酷波er应助将1采纳,获得10
33秒前
陈宇完成签到,获得积分10
34秒前
无花果应助比大家采纳,获得10
34秒前
oreo完成签到,获得积分10
37秒前
科研通AI5应助燕燕于飞采纳,获得10
39秒前
fenghp完成签到 ,获得积分20
40秒前
雨竹完成签到 ,获得积分10
40秒前
蒋依伶发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623