Use of Electronic Health Data for Disease Prediction: A Comprehensive Literature Review

杠杆(统计) 预测建模 计算机科学 疾病 医疗保健 数据科学 电子数据 数据挖掘 风险分析(工程) 医学 机器学习 情报检索 经济增长 病理 经济
作者
Md Ekramul Hossain,Arif Khan,Mohammad Ali Moni,Shahadat Uddin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 745-758 被引量:55
标识
DOI:10.1109/tcbb.2019.2937862
摘要

Disease prediction has the potential to benefit stakeholders such as the government and health insurance companies. It can identify patients at risk of disease or health conditions. Clinicians can then take appropriate measures to avoid or minimize the risk and in turn, improve quality of care and avoid potential hospital admissions. Due to the recent advancement of tools and techniques for data analytics, disease risk prediction can leverage large amounts of semantic information, such as demographics, clinical diagnosis and measurements, health behaviours, laboratory results, prescriptions and care utilisation. In this regard, electronic health data can be a potential choice for developing disease prediction models. A significant number of such disease prediction models have been proposed in the literature over time utilizing large-scale electronic health databases, different methods, and healthcare variables. The goal of this comprehensive literature review was to discuss different risk prediction models that have been proposed based on electronic health data. Search terms were designed to find relevant research articles that utilized electronic health data to predict disease risks. Online scholarly databases were searched to retrieve results, which were then reviewed and compared in terms of the method used, disease type, and prediction accuracy. This paper provides a comprehensive review of the use of electronic health data for risk prediction models. A comparison of the results from different techniques for three frequently modelled diseases using electronic health data was also discussed in this study. In addition, the advantages and disadvantages of different risk prediction models, as well as their performance, were presented. Electronic health data have been widely used for disease prediction. A few modelling approaches show very high accuracy in predicting different diseases using such data. These modelling approaches have been used to inform the clinical decision process to achieve better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨师傅完成签到 ,获得积分10
3秒前
泡泡啰叽完成签到,获得积分10
6秒前
7秒前
畅快的忆丹完成签到,获得积分10
7秒前
小五完成签到 ,获得积分10
9秒前
9秒前
科研通AI5应助Zxj采纳,获得10
9秒前
iehaoang完成签到 ,获得积分10
10秒前
852应助科研通管家采纳,获得10
12秒前
chiaoyin999应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
qiao应助繁荣的又夏采纳,获得10
15秒前
凤兮完成签到 ,获得积分10
20秒前
24秒前
31秒前
内向映天完成签到 ,获得积分10
35秒前
蓝色芒果完成签到,获得积分10
35秒前
阔达东蒽发布了新的文献求助10
38秒前
福荔完成签到 ,获得积分10
42秒前
李健应助小兔子采纳,获得10
45秒前
47秒前
56秒前
57秒前
Jasper应助称心寒松采纳,获得10
57秒前
1分钟前
1分钟前
1分钟前
rad1413完成签到 ,获得积分10
1分钟前
qiao应助心灵美小懒猪采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
紫罗兰花海完成签到 ,获得积分10
1分钟前
lyfsci发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
情怀应助1111111111111采纳,获得10
1分钟前
小兔子发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751