From Predictive to Prescriptive Analytics

杠杆(统计) 计算机科学 独立同分布随机变量 收入 数学优化 分析 航程(航空) 最优化问题 运筹学 计量经济学 随机变量 数据挖掘 数学 人工智能 经济 统计 会计 复合材料 材料科学
作者
Dimitris Bertsimas,Nathan Kallus
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1025-1044 被引量:473
标识
DOI:10.1287/mnsc.2018.3253
摘要

We combine ideas from machine learning (ML) and operations research and management science (OR/MS) in developing a framework, along with specific methods, for using data to prescribe optimal decisions in OR/MS problems. In a departure from other work on data-driven optimization, we consider data consisting, not only of observations of quantities with direct effect on costs/revenues, such as demand or returns, but also predominantly of observations of associated auxiliary quantities. The main problem of interest is a conditional stochastic optimization problem, given imperfect observations, where the joint probability distributions that specify the problem are unknown. We demonstrate how our proposed methods are generally applicable to a wide range of decision problems and prove that they are computationally tractable and asymptotically optimal under mild conditions, even when data are not independent and identically distributed and for censored observations. We extend these to the case in which some decision variables, such as price, may affect uncertainty and their causal effects are unknown. We develop the coefficient of prescriptiveness P to measure the prescriptive content of data and the efficacy of a policy from an operations perspective. We demonstrate our approach in an inventory management problem faced by the distribution arm of a large media company, shipping 1 billion units yearly. We leverage both internal data and public data harvested from IMDb, Rotten Tomatoes, and Google to prescribe operational decisions that outperform baseline measures. Specifically, the data we collect, leveraged by our methods, account for an 88% improvement as measured by our coefficient of prescriptiveness. This paper was accepted by Noah Gans, optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
刚刚
xx_y发布了新的文献求助10
刚刚
太吾墨完成签到,获得积分10
1秒前
积极的新柔完成签到,获得积分10
1秒前
lalal完成签到,获得积分10
1秒前
HP发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
别先生发布了新的文献求助10
3秒前
3秒前
笑点低代萱完成签到,获得积分10
4秒前
zebedee完成签到,获得积分20
4秒前
曾经二娘发布了新的文献求助10
5秒前
伶俐问薇完成签到,获得积分10
5秒前
kirin完成签到 ,获得积分10
5秒前
典雅的静发布了新的文献求助10
7秒前
zhangruiii发布了新的文献求助10
7秒前
魚子完成签到,获得积分0
7秒前
uupp完成签到,获得积分10
7秒前
小鹅发布了新的文献求助10
8秒前
别先生完成签到,获得积分10
8秒前
小猪完成签到,获得积分20
8秒前
LabRat完成签到 ,获得积分10
8秒前
无花果应助笑点低代萱采纳,获得10
8秒前
8秒前
gwt完成签到 ,获得积分10
9秒前
温暖诗双发布了新的文献求助10
9秒前
9秒前
max完成签到,获得积分10
10秒前
吴灵发布了新的文献求助10
11秒前
11秒前
淡定初珍完成签到,获得积分10
12秒前
12秒前
伍子胥完成签到,获得积分20
12秒前
xxxxj发布了新的文献求助10
13秒前
舒服的牛排完成签到,获得积分10
13秒前
冰墩墩完成签到,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938112
求助须知:如何正确求助?哪些是违规求助? 3483613
关于积分的说明 11024720
捐赠科研通 3213553
什么是DOI,文献DOI怎么找? 1776236
邀请新用户注册赠送积分活动 862433
科研通“疑难数据库(出版商)”最低求助积分说明 798464