Estimating fractional green vegetation cover of Mongolian grasslands using digital camera images and MODIS satellite vegetation indices

植被(病理学) 归一化差异植被指数 遥感 卫星图像 卫星 均方误差 环境科学 土地覆盖 地理 数学 统计 叶面积指数 土地利用 生态学 医学 病理 航空航天工程 工程类 生物
作者
Jaebeom Kim,Sinkyu Kang,Bumsuk Seo,Amratuvshin Narantsetseg,Young-Ji Han
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:57 (1): 49-59 被引量:31
标识
DOI:10.1080/15481603.2019.1662166
摘要

Fractional green vegetation cover (FVC) is a useful indicator for monitoring grassland status. Satellite imagery with coarse spatial but high temporal resolutions has been preferred to monitor seasonal and inter-annual FVC dynamics in wide geographic area such as Mongolian steppe. However, the coarse spatial resolution can cause a certain uncertainty in the satellite-based FVC estimation, which calls attention to develop a robust statistical test for the relationship between field FVC and satellite-derived vegetation indices. In the arid and semi-arid Mongolian steppe, nadir pointing digital camera images (DCI) were collected and used to produce a FVC dataset to support the evaluation of satellite-based FVC retrievals. An optimal DCI processing method was determined with respect to three color spaces (RGB, HIS, L*a*b*) and six green pixel classification algorithms, from which a country-wide dataset of DCI-FVC was produced and used for evaluating the accuracy of satellite-based FVC estimates from MODIS vegetation indices. We applied three empirical and three semi-empirical MODIS-FVC retrieval models. DCI data were collected from 96 sites across the Mongolian steppe from 2012 to 2014. The histogram algorithm using the hue (H) value of the HIS color space was the optimal DCI method (r2 = 0.94, percent root-mean-square-error (RMSE) = 7.1%). For MODIS-FVC retrievals, semi-empirical Baret model was the best-performing model with the highest r2 (0.69) and the lowest RMSE (49.7%), while the lowest MB (+1.1%) was found for the regression model with normalized difference vegetation index (NDVI). The high RMSE (>50% or so) is an issue requiring further enhancement of satellite-based FVC retrievals accounting for key plant and soil parameters relevant to the Mongolian steppe and for scale mismatch between sampling and MODIS data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助呜呜呜啦采纳,获得40
1秒前
酷波er应助harden9159采纳,获得10
1秒前
2秒前
gggg发布了新的文献求助10
5秒前
天天快乐应助循证小刘采纳,获得30
6秒前
遇上就这样吧应助Aurora.H采纳,获得200
6秒前
kevin_kong完成签到,获得积分10
6秒前
only完成签到 ,获得积分10
9秒前
9秒前
彭于晏应助伟峰采纳,获得10
11秒前
风清扬应助如意访卉采纳,获得10
11秒前
和谐的问丝完成签到,获得积分10
12秒前
执着夏岚发布了新的文献求助10
15秒前
朴素绿蝶发布了新的文献求助10
15秒前
舒心夜蕾完成签到,获得积分10
16秒前
Heyley完成签到,获得积分10
18秒前
18秒前
小胖子完成签到 ,获得积分10
20秒前
南冥完成签到 ,获得积分10
21秒前
22秒前
陈某完成签到 ,获得积分10
22秒前
123发布了新的文献求助10
24秒前
香蕉觅云应助Taylor采纳,获得10
24秒前
双儿完成签到,获得积分10
24秒前
日富一日完成签到 ,获得积分10
26秒前
朴实凝雁发布了新的文献求助10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
老阎应助科研通管家采纳,获得30
27秒前
今后应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
老阎应助科研通管家采纳,获得30
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
27秒前
27秒前
无花果应助yuzhongLuo采纳,获得10
28秒前
luo发布了新的文献求助10
29秒前
minkeyantong完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4801128
求助须知:如何正确求助?哪些是违规求助? 4119611
关于积分的说明 12744629
捐赠科研通 3851379
什么是DOI,文献DOI怎么找? 2121414
邀请新用户注册赠送积分活动 1143556
关于科研通互助平台的介绍 1033483