Prediction of depression symptoms in individual subjects with face and eye movement tracking

眼球运动 分散注意力 心理学 认知 医学诊断 金标准(测试) 萧条(经济学) 物理医学与康复 眼动 听力学 认知心理学 医学 人工智能 精神科 计算机科学 神经科学 内科学 宏观经济学 病理 经济
作者
Aleks Stolicyn,J. Douglas Steele,Peggy Seriès
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:52 (9): 1784-1792 被引量:34
标识
DOI:10.1017/s0033291720003608
摘要

Abstract Background Depression is a challenge to diagnose reliably and the current gold standard for trials of DSM-5 has been in agreement between two or more medical specialists. Research studies aiming to objectively predict depression have typically used brain scanning. Less expensive methods from cognitive neuroscience may allow quicker and more reliable diagnoses, and contribute to reducing the costs of managing the condition. In the current study we aimed to develop a novel inexpensive system for detecting elevated symptoms of depression based on tracking face and eye movements during the performance of cognitive tasks. Methods In total, 75 participants performed two novel cognitive tasks with verbal affective distraction elements while their face and eye movements were recorded using inexpensive cameras. Data from 48 participants (mean age 25.5 years, standard deviation of 6.1 years, 25 with elevated symptoms of depression) passed quality control and were included in a case-control classification analysis with machine learning. Results Classification accuracy using cross-validation (within-study replication) reached 79% (sensitivity 76%, specificity 82%), when face and eye movement measures were combined. Symptomatic participants were characterised by less intense mouth and eyelid movements during different stages of the two tasks, and by differences in frequencies and durations of fixations on affectively salient distraction words. Conclusions Elevated symptoms of depression can be detected with face and eye movement tracking during the cognitive performance, with a close to clinically-relevant accuracy (~80%). Future studies should validate these results in larger samples and in clinical populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助harryhey采纳,获得10
刚刚
机智乐蕊发布了新的文献求助30
2秒前
隐形曼青应助风趣夜云采纳,获得10
2秒前
糊涂的储发布了新的文献求助10
2秒前
3秒前
353851547crf完成签到,获得积分10
3秒前
有魅力的安蕾完成签到 ,获得积分10
4秒前
汉堡包应助pc采纳,获得10
4秒前
潇洒黑夜完成签到,获得积分10
5秒前
科研通AI6应助嘟嘟爱睡觉采纳,获得30
6秒前
小宋应助null采纳,获得20
6秒前
李哈哈发布了新的文献求助10
6秒前
隐形曼青应助洁净路灯采纳,获得10
7秒前
慕青应助Moo5_zzZ采纳,获得30
7秒前
和谐续发布了新的文献求助10
9秒前
香蕉觅云应助要减肥小小采纳,获得10
9秒前
斯文败类应助FengGo采纳,获得10
11秒前
科研通AI2S应助AnYijing采纳,获得30
11秒前
13秒前
13秒前
糊涂的储完成签到,获得积分10
13秒前
Tomgoodjob完成签到,获得积分10
14秒前
14秒前
14秒前
上官若男应助you采纳,获得10
15秒前
15秒前
Rabbit发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
20秒前
21秒前
23秒前
liumuyi发布了新的文献求助10
23秒前
专注臻发布了新的文献求助10
24秒前
FengGo完成签到,获得积分20
24秒前
24秒前
24秒前
韦良晨完成签到,获得积分10
25秒前
小吉利发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727543
求助须知:如何正确求助?哪些是违规求助? 4084164
关于积分的说明 12631753
捐赠科研通 3790854
什么是DOI,文献DOI怎么找? 2093472
邀请新用户注册赠送积分活动 1119306
科研通“疑难数据库(出版商)”最低求助积分说明 995490