寡核苷酸
突变
太赫兹辐射
DNA
分子生物学
基因
基因突变
生物
化学
遗传学
材料科学
光电子学
作者
Mingjie Tang,Mingkun Zhang,Liangping Xia,Zhongbo Yang,Shihan Yan,Huabin Wang,Dongshan Wei,Chunlei Du,Hong‐Liang Cui
摘要
Many human genetic diseases are caused by single-base mutation in the gene sequence. Since DNA molecules with single-base mutation are extremely difficult to differentiate, existing detection methods are invariably complex and time-consuming. We propose a new label-free and fast terahertz (THz) spectroscopic technique based on a home-made terahertz attenuated total reflection (ATR) microfluidic cell and a terahertz time-domain spectroscopy (THz-TDS) system to detect single-base-mutated DNA molecules. The detected object DNA molecules are normal hemoglobin gene, sickle cell anemia gene (15 nt), JAK2 gene wild type and JAK2 V617F gene mutation (39 nt) from sickle cell anemia and thrombocytopenia, respectively. Results show that the oligonucleotide fragments with single-base mutation can be identified by THz spectroscopy combined with the ATR microfluidic cell, and the recognition effect of short oligonucleotide fragments with single-base mutation is better than that of long oligonucleotide fragments. The terahertz biosensor is shown to have high sensitivity and can be used to detect DNA molecules directly in the solution environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI