Learning Quadrupedal Locomotion over Challenging Terrain

地形 步态 两足动物
作者
Joonho Lee,Jemin Hwangbo,Lorenz Wellhausen,Vladlen Koltun,Marco Hutter
出处
期刊:arXiv: Robotics 被引量:9
标识
DOI:10.1126/scirobotics.abc5986
摘要

Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美芹发布了新的文献求助10
1秒前
赘婿应助BareBear采纳,获得10
2秒前
huihuiyve完成签到,获得积分10
3秒前
嗯哼完成签到,获得积分10
3秒前
4秒前
高大鸭子完成签到 ,获得积分10
4秒前
阿航完成签到,获得积分10
5秒前
隐形曼青应助斯文静竹采纳,获得30
7秒前
www发布了新的文献求助10
9秒前
xiaoxiao完成签到,获得积分10
9秒前
10秒前
孤独的珩完成签到,获得积分10
11秒前
ycp完成签到,获得积分10
12秒前
可爱的函函应助完美芹采纳,获得10
15秒前
滴滴发布了新的文献求助10
16秒前
高高雪瑶完成签到,获得积分10
18秒前
19秒前
李健应助sdl采纳,获得10
23秒前
斯文静竹完成签到,获得积分10
24秒前
慕青应助孤独雁桃采纳,获得10
24秒前
风筝与亭完成签到 ,获得积分10
25秒前
科研通AI5应助沉着采纳,获得10
25秒前
Lazy完成签到,获得积分10
26秒前
聪明白羊完成签到,获得积分10
30秒前
wanli445完成签到,获得积分10
32秒前
仔仔完成签到,获得积分10
34秒前
36秒前
传奇3应助Kannan采纳,获得10
38秒前
期待未来的自己应助wise111采纳,获得10
38秒前
sdl发布了新的文献求助10
39秒前
舒适沛儿完成签到,获得积分10
40秒前
渝州人完成签到,获得积分10
41秒前
田昀杰完成签到,获得积分20
41秒前
42秒前
研友_VZG7GZ应助槿落采纳,获得10
43秒前
谦让的牛排完成签到 ,获得积分10
44秒前
您吃了吗完成签到 ,获得积分10
45秒前
科研通AI2S应助ytx采纳,获得10
47秒前
nsnyyds发布了新的文献求助10
48秒前
lyn_zhou发布了新的文献求助10
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341693
关于积分的说明 10307203
捐赠科研通 3058271
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762818