Learning Quadrupedal Locomotion over Challenging Terrain

地形 步态 两足动物
作者
Joonho Lee,Jemin Hwangbo,Lorenz Wellhausen,Vladlen Koltun,Marco Hutter
出处
期刊:arXiv: Robotics 被引量:9
标识
DOI:10.1126/scirobotics.abc5986
摘要

Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
李昆朋完成签到,获得积分10
2秒前
huhu发布了新的文献求助10
3秒前
3秒前
3秒前
wh1t3zZ完成签到,获得积分10
4秒前
4秒前
4秒前
复杂鼠标完成签到,获得积分10
4秒前
5秒前
科目三应助钱仙人采纳,获得10
5秒前
活力安筠应助钱仙人采纳,获得10
6秒前
思源应助钱仙人采纳,获得30
6秒前
无花果应助钱仙人采纳,获得10
6秒前
所所应助钱仙人采纳,获得10
6秒前
李健应助钱仙人采纳,获得10
6秒前
6秒前
在水一方应助钱仙人采纳,获得10
6秒前
传奇3应助地道牛采纳,获得10
6秒前
顾矜应助钱仙人采纳,获得10
6秒前
lingua应助超级的丹亦采纳,获得10
6秒前
赵大炮完成签到,获得积分20
7秒前
x的3次方发布了新的文献求助10
7秒前
bkagyin应助huan采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
9秒前
文瑶琪发布了新的文献求助10
9秒前
9秒前
多肉丸子发布了新的文献求助10
9秒前
响彻云霄发布了新的文献求助10
9秒前
务实映之完成签到,获得积分10
9秒前
jincheng发布了新的文献求助10
9秒前
9秒前
9秒前
zq完成签到,获得积分10
10秒前
难过的蘑菇完成签到,获得积分10
10秒前
完美世界应助菜菜果冻采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4671819
求助须知:如何正确求助?哪些是违规求助? 4051157
关于积分的说明 12527957
捐赠科研通 3744624
什么是DOI,文献DOI怎么找? 2068043
邀请新用户注册赠送积分活动 1097390
科研通“疑难数据库(出版商)”最低求助积分说明 977529