Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm

计算机科学 人工智能 模式识别(心理学) 萤火虫算法 二元分类 分类器(UML) 支持向量机 特征选择 情绪分类 脑电图 粒子群优化 情绪识别 机器学习 心理学 精神科
作者
Hong He,Yonghong Tan,Ying Jun,Wuxiong Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:94: 106426-106426 被引量:58
标识
DOI:10.1016/j.asoc.2020.106426
摘要

Emotion recognition is helpful for human to enhance self-awareness and respond appropriately towards the happenings around them. Due to the complexity and diversity of emotions, EEG-based emotion recognition is still a challenging task in pattern recognition. In order to recognize diverse emotions, we propose a novel firefly integrated optimization algorithm (FIOA) in this paper. It can simultaneously accomplish multiple tasks, i.e. the optimal feature selection, parameter setting and classifier selection according to different EEG-based emotion datasets. The FIOA utilizes a ranking probability objection function to guarantee the high accuracy recognition with less features. Moreover, the hybrid encoding expression and the dual updating strategy are developed in the FIOA so as to realize the optimal selection of feature subset and classifier without stagnating in the local optimum. In addition to the public DEAP datasets, we also conducted an EEG-based music emotion experiment involving 20 subjects for the validation of the proposed FIOA. After filtering and segmentation, three categories of features were extracted from every EEG signal. Then FIOA was applied to every subject dataset for two pattern recognition of emotions. The results show that the FIOA can automatically find the optimal features, parameter and classifier for different emotion datasets, which greatly reduces the artificial selection workload. Furthermore, comparing with the binary particle swarm optimization (PSObinary) and the binary firefly (FAbinary), the FIOA can achieve the higher accuracy with less features in the emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可990210发布了新的文献求助10
2秒前
科研通AI6应助尊敬的便当采纳,获得10
3秒前
3秒前
小炮仗完成签到 ,获得积分10
4秒前
阿飘应助罗钦采纳,获得10
5秒前
科研通AI2S应助罗钦采纳,获得10
5秒前
科研通AI2S应助罗钦采纳,获得10
5秒前
戏子应助罗钦采纳,获得10
5秒前
思辨233发布了新的文献求助10
5秒前
6秒前
弄好不啦发布了新的文献求助10
8秒前
ding应助科研小狗采纳,获得10
9秒前
9秒前
121313完成签到,获得积分10
9秒前
TobyGarfielD发布了新的文献求助10
11秒前
12秒前
烟花应助小呆呆采纳,获得10
12秒前
爆炸boom完成签到 ,获得积分10
12秒前
Akim应助腻腻采纳,获得10
13秒前
14秒前
Ava应助弄好不啦采纳,获得10
14秒前
奋斗的萝发布了新的文献求助10
16秒前
16秒前
18秒前
Future完成签到 ,获得积分10
21秒前
22秒前
悦悦发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
Hello应助花开富贵采纳,获得10
23秒前
搜集达人应助zj采纳,获得10
24秒前
25秒前
眯眯眼的山柳完成签到 ,获得积分10
28秒前
28秒前
29秒前
张涛发布了新的文献求助10
30秒前
31秒前
alexysw发布了新的文献求助10
33秒前
NOAH发布了新的文献求助30
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248424
求助须知:如何正确求助?哪些是违规求助? 3781617
关于积分的说明 11872456
捐赠科研通 3434287
什么是DOI,文献DOI怎么找? 1884846
邀请新用户注册赠送积分活动 936418
科研通“疑难数据库(出版商)”最低求助积分说明 842350