Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm

计算机科学 人工智能 模式识别(心理学) 萤火虫算法 二元分类 分类器(UML) 支持向量机 特征选择 情绪分类 脑电图 粒子群优化 情绪识别 机器学习 心理学 精神科
作者
Hong He,Yonghong Tan,Ying Jun,Wuxiong Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:94: 106426-106426 被引量:58
标识
DOI:10.1016/j.asoc.2020.106426
摘要

Emotion recognition is helpful for human to enhance self-awareness and respond appropriately towards the happenings around them. Due to the complexity and diversity of emotions, EEG-based emotion recognition is still a challenging task in pattern recognition. In order to recognize diverse emotions, we propose a novel firefly integrated optimization algorithm (FIOA) in this paper. It can simultaneously accomplish multiple tasks, i.e. the optimal feature selection, parameter setting and classifier selection according to different EEG-based emotion datasets. The FIOA utilizes a ranking probability objection function to guarantee the high accuracy recognition with less features. Moreover, the hybrid encoding expression and the dual updating strategy are developed in the FIOA so as to realize the optimal selection of feature subset and classifier without stagnating in the local optimum. In addition to the public DEAP datasets, we also conducted an EEG-based music emotion experiment involving 20 subjects for the validation of the proposed FIOA. After filtering and segmentation, three categories of features were extracted from every EEG signal. Then FIOA was applied to every subject dataset for two pattern recognition of emotions. The results show that the FIOA can automatically find the optimal features, parameter and classifier for different emotion datasets, which greatly reduces the artificial selection workload. Furthermore, comparing with the binary particle swarm optimization (PSObinary) and the binary firefly (FAbinary), the FIOA can achieve the higher accuracy with less features in the emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助tsuipeng采纳,获得10
刚刚
啦啦啦发布了新的文献求助20
刚刚
自由迎曼发布了新的文献求助10
刚刚
YJL发布了新的文献求助10
刚刚
刚刚
Lucas应助含糊的睫毛膏采纳,获得10
刚刚
笨笨芯发布了新的文献求助10
1秒前
忧伤的元菱完成签到,获得积分20
2秒前
lulumomo完成签到,获得积分10
2秒前
万能图书馆应助young采纳,获得10
2秒前
狗德拜发布了新的文献求助10
2秒前
2秒前
木木发布了新的文献求助10
2秒前
3秒前
ljj发布了新的文献求助10
3秒前
SciGPT应助苦也采纳,获得10
3秒前
HX发布了新的文献求助10
4秒前
haoooooooooooooo完成签到,获得积分10
4秒前
nong12123发布了新的文献求助10
4秒前
雁塔吃辣条完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
上官若男应助kyJYbs采纳,获得10
6秒前
子车茗应助白_ww采纳,获得30
6秒前
高大绝义发布了新的文献求助10
7秒前
ztayx完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
高公子发布了新的文献求助10
10秒前
微笑的千雁完成签到,获得积分20
10秒前
Hello应助zz采纳,获得10
10秒前
Chuck发布了新的文献求助20
11秒前
完美世界应助ChenCi采纳,获得10
11秒前
敏感迎丝完成签到 ,获得积分10
12秒前
冯11完成签到,获得积分10
12秒前
666完成签到,获得积分10
12秒前
Hwenjing完成签到,获得积分10
12秒前
张宇发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793862
求助须知:如何正确求助?哪些是违规求助? 3338735
关于积分的说明 10291207
捐赠科研通 3055146
什么是DOI,文献DOI怎么找? 1676366
邀请新用户注册赠送积分活动 804406
科研通“疑难数据库(出版商)”最低求助积分说明 761853