Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines

作业车间调度 流水车间调度 计算机科学 调度(生产过程) 批处理 能源消耗 数学优化 公平份额计划 差异进化 算法 工程类 嵌入式系统 数学 地铁列车时刻表 布线(电子设计自动化) 电气工程 程序设计语言 操作系统
作者
Xiuli Wu,Yuan Qi,Ling Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 757-775 被引量:51
标识
DOI:10.1109/tase.2020.2969469
摘要

Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners-This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季风气候完成签到 ,获得积分10
2秒前
落忆完成签到 ,获得积分10
3秒前
TiY完成签到 ,获得积分10
3秒前
Hindiii完成签到,获得积分10
4秒前
5秒前
单薄广山完成签到,获得积分10
6秒前
6秒前
star完成签到,获得积分10
7秒前
留胡子的霖完成签到,获得积分10
9秒前
追寻梦之发布了新的文献求助30
10秒前
10秒前
科目三应助lxlcx采纳,获得10
11秒前
吃小孩的妖怪完成签到 ,获得积分10
12秒前
Anna完成签到 ,获得积分10
15秒前
在我梦里绕完成签到,获得积分10
15秒前
一天八杯水完成签到,获得积分10
20秒前
南城雨落完成签到,获得积分10
21秒前
21秒前
xinjiasuki完成签到 ,获得积分10
22秒前
LiuChuannan完成签到 ,获得积分10
25秒前
wcy完成签到 ,获得积分10
26秒前
Hua完成签到,获得积分10
26秒前
26秒前
wly发布了新的文献求助10
27秒前
陈好好完成签到 ,获得积分10
27秒前
杨艳完成签到 ,获得积分10
29秒前
gdgd完成签到,获得积分10
29秒前
CodeCraft应助拼搏的路灯采纳,获得10
31秒前
Youlu发布了新的文献求助10
33秒前
青ZZZZ完成签到 ,获得积分10
33秒前
CodeCraft应助wly采纳,获得10
34秒前
freeway完成签到,获得积分10
35秒前
东郭一斩完成签到,获得积分10
36秒前
37秒前
刘刘完成签到,获得积分10
38秒前
罗氏集团完成签到,获得积分10
40秒前
41秒前
穆一手完成签到 ,获得积分10
41秒前
Dave发布了新的文献求助20
42秒前
43秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833944
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492766
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859