Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

医学 微卫星不稳定性 结直肠癌 不稳定性 人工智能 深度学习 内科学 癌症 肿瘤科 微卫星 计算机科学 物理 生物 遗传学 等位基因 基因 机械
作者
Rikiya Yamashita,Jin Long,Teri A. Longacre,Lan Peng,Gerald J. Berry,Brock A. Martin,Julian P. T. Higgins,Daniel L. Rubin,Jeanne Shen
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:22 (1): 132-141 被引量:297
标识
DOI:10.1016/s1470-2045(20)30535-0
摘要

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model's performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小坤完成签到,获得积分20
刚刚
科研通AI5应助whuyyz采纳,获得10
1秒前
热情的戾发布了新的文献求助10
1秒前
城南发布了新的文献求助10
1秒前
2秒前
xiuxiu125完成签到,获得积分10
2秒前
2秒前
小哲发布了新的文献求助10
3秒前
3秒前
1117完成签到 ,获得积分10
3秒前
4秒前
斯文败类应助故意的初阳采纳,获得10
4秒前
QDUlong发布了新的文献求助10
5秒前
7秒前
大个应助11111采纳,获得10
7秒前
情怀应助雨晗采纳,获得10
7秒前
7秒前
8秒前
热情的戾完成签到,获得积分10
8秒前
沉静青旋完成签到,获得积分10
8秒前
Ava应助慕舒采纳,获得10
9秒前
10秒前
lee1992完成签到,获得积分10
10秒前
宁不惜完成签到,获得积分10
10秒前
ZQM完成签到,获得积分10
10秒前
婆婆丁应助ouwenwen采纳,获得10
10秒前
LHH关闭了LHH文献求助
11秒前
11秒前
nanan完成签到,获得积分10
11秒前
11秒前
Summer完成签到,获得积分20
12秒前
深情安青应助小李采纳,获得10
13秒前
喻新竹完成签到 ,获得积分10
13秒前
14秒前
ZQM发布了新的文献求助20
14秒前
漂亮翠曼完成签到,获得积分10
14秒前
15秒前
阿龙发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158598
求助须知:如何正确求助?哪些是违规求助? 3694481
关于积分的说明 11666176
捐赠科研通 3386616
什么是DOI,文献DOI怎么找? 1857188
邀请新用户注册赠送积分活动 918236
科研通“疑难数据库(出版商)”最低求助积分说明 831434