Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

医学 微卫星不稳定性 结直肠癌 不稳定性 人工智能 深度学习 内科学 癌症 肿瘤科 微卫星 计算机科学 物理 生物 遗传学 等位基因 基因 机械
作者
Rikiya Yamashita,Jin Long,Teri A. Longacre,Lan Peng,Gerald J. Berry,Brock A. Martin,Julian P. T. Higgins,Daniel L. Rubin,Jeanne Shen
出处
期刊:Lancet Oncology [Elsevier]
卷期号:22 (1): 132-141 被引量:340
标识
DOI:10.1016/s1470-2045(20)30535-0
摘要

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model's performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助hhh采纳,获得10
刚刚
wenwenwang发布了新的文献求助10
刚刚
李健的小迷弟应助xxx采纳,获得10
1秒前
stronging发布了新的文献求助10
2秒前
2秒前
七七爱学习完成签到,获得积分10
2秒前
TINASO发布了新的文献求助10
3秒前
Ran完成签到 ,获得积分10
4秒前
hongyi66完成签到 ,获得积分10
4秒前
cenghao完成签到,获得积分0
4秒前
李健的小迷弟应助小雨采纳,获得10
5秒前
6秒前
yaoyaoya完成签到,获得积分10
6秒前
在水一方应助stronging采纳,获得10
6秒前
kyt732发布了新的文献求助10
7秒前
7秒前
pluto应助从容慕青采纳,获得10
8秒前
8秒前
优美紫槐发布了新的文献求助10
8秒前
风清扬应助骆凤灵采纳,获得30
8秒前
小二郎应助微微采纳,获得10
9秒前
9秒前
tangzl发布了新的文献求助10
12秒前
丘比特应助renkemaomao采纳,获得10
12秒前
乐乐应助洁净思枫采纳,获得10
13秒前
卜天亦发布了新的文献求助30
13秒前
承乐应助瘦瘦安梦采纳,获得10
14秒前
嘻嘻完成签到,获得积分10
15秒前
科研通AI2S应助mikasa采纳,获得10
15秒前
2号发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
18秒前
19秒前
Zxy完成签到,获得积分10
19秒前
20秒前
20秒前
ding应助优美紫槐采纳,获得10
20秒前
风清扬应助夕沫采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862295
捐赠科研通 4701787
什么是DOI,文献DOI怎么找? 2542138
邀请新用户注册赠送积分活动 1507793
关于科研通互助平台的介绍 1472113