异种移植
医学
不利影响
免疫学
白喉毒素
移植
病理
外科
生物
内科学
生物化学
毒素
作者
Paul Holzer,Elizabeth Chang,Joan Wicks,Linda Scobie,Claire Crossan,Rod Monroy
摘要
Abstract Background Allogeneic skin recovered from human deceased donors (HDD) has been a mainstay interim treatment for severe burns, but unfortunately risk of infectious disease and availability limitations exist. Genetically engineered ɑ‐1,3 galactosyltransferase knockout (GalT‐KO) porcine source animals for viable skin xenotransplants may provide a promising clinical alternative. Methods Four cynomolgus macaque recipients received full‐thickness surgical wounds to model the defects arising from excision of full‐thickness burn injury and were treated with biologically active skin xenotransplants derived from GalT‐KO, Designated Pathogen Free (DPF) miniature swine. Evaluations were conducted for safety, tolerability, and recipient immunological response. Results All skin xenotransplants demonstrated prolonged survival, vascularity, and persistent dermal adhesion until the study endpoint at post‐operative day 30. No adverse outcomes were observed during the study. Varying levels of epidermolysis coincided with histologic detection of CD4+ and CD8+ T cells, and other cellular infiltrates in the epidermis. Recipient sera IgM and IgG demonstrated significant antibody immune response to non‐α‐1,3‐galactose porcine xenoantigens. Separately, specific wound healing mediators were quantified. Neither porcine cell migration nor PERV were detected in circulation or any visceral organs. Conclusions These results provide a detailed analysis of vital skin xenotransplants utilizing a non‐human primate model to predict the anticipated immunological response of human patients. The lack of adverse rejection even in the presence of elevated Ig indicates this is a prospective therapeutic option. The findings reported here directly supported regulatory clearance for a first‐in‐man, Phase I xenotransplantation clinical trial.
科研通智能强力驱动
Strongly Powered by AbleSci AI