分歧(语言学)
人口历史
生物
进化生物学
人口
基因流
推论
生态学
人口学
遗传学
计算机科学
遗传变异
基因
哲学
人工智能
语言学
社会学
作者
Paolo Momigliano,Ann‐Britt Florin,Juha Merilä
标识
DOI:10.1093/molbev/msab047
摘要
Abstract Testing among competing demographic models of divergence has become an important component of evolutionary research in model and non-model organisms. However, the effect of unaccounted demographic events on model choice and parameter estimation remains largely unexplored. Using extensive simulations, we demonstrate that under realistic divergence scenarios, failure to account for population size (Ne) changes in daughter and ancestral populations leads to strong biases in divergence time estimates as well as model choice. We illustrate these issues reconstructing the recent demographic history of North Sea and Baltic Sea turbots (Schopthalmus maximus) by testing 16 Isolation with Migration (IM) and 16 Secondary Contact (SC) scenarios, modelling changes in Ne as well as the effects of linked selection and barrier loci. Failure to account for changes in Ne resulted in selecting SC models with long periods of isolation and divergence times preceding the formation of the Baltic Sea. In contrast, models accounting for Ne changes suggest recent (<6 kya) divergence with constant gene flow. We further show how interpreting genomic landscapes of differentiation can help discerning among competing models. For example, in the turbots data islands of differentiation show signatures of recent selective sweeps, rather than old divergence resisting secondary introgression. The results have broad implications for the study of population divergence by high-lighting the potential effects of unmodeleld changes in Ne on demographic inference. Tested models should aim at representing realistic divergence scenarios for the target taxa, and extreme caution should always be exercised when interpreting results of demographic modelling.
科研通智能强力驱动
Strongly Powered by AbleSci AI