Biases in demographic modelling affect our understanding of recent divergence

分歧(语言学) 人口历史 生物 进化生物学 人口 基因流 推论 生态学 人口学 遗传学 计算机科学 遗传变异 基因 哲学 人工智能 语言学 社会学
作者
Paolo Momigliano,Ann‐Britt Florin,Juha Merilä
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
卷期号:38 (7): 2967-2985 被引量:62
标识
DOI:10.1093/molbev/msab047
摘要

Abstract Testing among competing demographic models of divergence has become an important component of evolutionary research in model and non-model organisms. However, the effect of unaccounted demographic events on model choice and parameter estimation remains largely unexplored. Using extensive simulations, we demonstrate that under realistic divergence scenarios, failure to account for population size (Ne) changes in daughter and ancestral populations leads to strong biases in divergence time estimates as well as model choice. We illustrate these issues reconstructing the recent demographic history of North Sea and Baltic Sea turbots (Schopthalmus maximus) by testing 16 Isolation with Migration (IM) and 16 Secondary Contact (SC) scenarios, modelling changes in Ne as well as the effects of linked selection and barrier loci. Failure to account for changes in Ne resulted in selecting SC models with long periods of isolation and divergence times preceding the formation of the Baltic Sea. In contrast, models accounting for Ne changes suggest recent (<6 kya) divergence with constant gene flow. We further show how interpreting genomic landscapes of differentiation can help discerning among competing models. For example, in the turbots data islands of differentiation show signatures of recent selective sweeps, rather than old divergence resisting secondary introgression. The results have broad implications for the study of population divergence by high-lighting the potential effects of unmodeleld changes in Ne on demographic inference. Tested models should aim at representing realistic divergence scenarios for the target taxa, and extreme caution should always be exercised when interpreting results of demographic modelling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜兜发布了新的文献求助10
刚刚
1秒前
科研通AI6.1应助木沐采纳,获得10
1秒前
Akim应助悠咪采纳,获得10
1秒前
EJNam发布了新的文献求助10
2秒前
信马由缰关注了科研通微信公众号
2秒前
斯文败类应助Young采纳,获得10
2秒前
李爱国应助小易采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
小丸子完成签到,获得积分10
4秒前
情怀应助shiwu采纳,获得10
6秒前
6秒前
lihe发布了新的文献求助10
6秒前
Jasper应助zhangsfdfgldf采纳,获得10
6秒前
7秒前
chemstation发布了新的文献求助10
7秒前
汉堡包应助wzzf采纳,获得10
7秒前
8秒前
在水一方应助huco采纳,获得10
8秒前
8秒前
小二郎应助星眠采纳,获得50
8秒前
9秒前
iridium发布了新的文献求助10
9秒前
酷波er应助Gloriauuu采纳,获得10
9秒前
9秒前
10秒前
10秒前
michen发布了新的文献求助10
10秒前
曾经二娘发布了新的文献求助10
10秒前
10秒前
11秒前
null应助手术刀采纳,获得10
12秒前
慕青应助mark707采纳,获得30
12秒前
12秒前
lllllllulu发布了新的文献求助10
13秒前
FashionBoy应助冷静的小松鼠采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189