Computational design of ligand-binding proteins with high affinity and selectivity

配体(生物化学) 地高辛 计算生物学 蛋白质设计 配体效率 结合选择性 化学 小分子 蛋白质配体 结合位点 计算机科学 生物 蛋白质结构 生物化学 受体 基因 基因表达 原位杂交 计算机安全
作者
Christine E. Tinberg,Sagar D. Khare,Jiayi Dou,Lindsey Doyle,Jorgen Nelson,Alberto Schena,Wojciech Jankowski,Charalampos G. Kalodimos,Kai Johnsson,Barry Stoddard,David Baker
出处
期刊:Nature [Springer Nature]
卷期号:501 (7466): 212-216 被引量:438
标识
DOI:10.1038/nature12443
摘要

Computational protein design is used to create a protein that binds the steroid digoxigenin (DIG) with high affinity and selectivity; the computational design methods described here should help to enable the development of a new generation of small molecule receptors for synthetic biology, diagnostics and therapeutics. Current approaches to the design of ligand-binding proteins for medical or biotechnological applications involve raising antibodies against a target antigen in immunized animals and/or performing directed evolution experiments on proteins with pre-existing, low affinity for the desired ligand. This paper describes a general method for the computational design of small molecule binding proteins that the authors use to design high-affinity and highly selective binding sites for the steroid digoxigenin, a cardiac glycoside used to treat heart disease. Using this method it should be possible to rapidly create small molecule receptors for synthetic biology applications, therapeutic scavengers for toxic compounds in vivo and robust ligand-binding domains for diagnostic devices. The ability to design proteins with high affinity and selectivity for any given small molecule is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition. Attempts to rationally design ligand-binding proteins have met with little success, however, and the computational design of protein–small-molecule interfaces remains an unsolved problem1. Current approaches for designing ligand-binding proteins for medical2 and biotechnological uses rely on raising antibodies against a target antigen in immunized animals3,4 and/or performing laboratory-directed evolution of proteins with an existing low affinity for the desired ligand5,6,7, neither of which allows complete control over the interactions involved in binding. Here we describe a general computational method for designing pre-organized and shape complementary small-molecule-binding sites, and use it to generate protein binders to the steroid digoxigenin (DIG). Of seventeen experimentally characterized designs, two bind DIG; the model of the higher affinity binder has the most energetically favourable and pre-organized interface in the design set. A comprehensive binding-fitness landscape of this design, generated by library selections and deep sequencing, was used to optimize its binding affinity to a picomolar level, and X-ray co-crystal structures of two variants show atomic-level agreement with the corresponding computational models. The optimized binder is selective for DIG over the related steroids digitoxigenin, progesterone and β-oestradiol, and this steroid binding preference can be reprogrammed by manipulation of explicitly designed hydrogen-bonding interactions. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让安双发布了新的文献求助10
刚刚
共享精神应助独云采纳,获得10
刚刚
晕晕完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
春深半夏发布了新的文献求助10
3秒前
3秒前
余一台发布了新的文献求助10
3秒前
3秒前
科目三应助迷人书蝶采纳,获得10
4秒前
xxd发布了新的文献求助10
4秒前
张静怡发布了新的文献求助10
4秒前
缓慢醉卉完成签到 ,获得积分10
4秒前
现安发布了新的文献求助30
5秒前
ding应助心想事成采纳,获得10
5秒前
Jane发布了新的文献求助10
5秒前
6秒前
spc68应助Sickey采纳,获得10
6秒前
8秒前
王达庆发布了新的文献求助10
8秒前
8秒前
8秒前
思源应助xxd采纳,获得10
10秒前
喜悦饼干完成签到 ,获得积分10
10秒前
墨扬发布了新的文献求助10
12秒前
bkagyin应助海边的卡卡罗特采纳,获得30
12秒前
17完成签到,获得积分10
12秒前
12秒前
是ok耶完成签到,获得积分10
13秒前
LX完成签到,获得积分10
13秒前
动听的时光完成签到,获得积分10
13秒前
唐寒溪发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
yee发布了新的文献求助10
14秒前
斯文败类应助longer采纳,获得10
14秒前
Ellen完成签到,获得积分10
15秒前
66发布了新的文献求助10
15秒前
赘婿应助心想事成采纳,获得10
16秒前
16秒前
迷人书蝶发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454