已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A practical guide to the selection of independent components of the electroencephalogram for artifact correction

工件(错误) 计算机科学 独立成分分析 人工智能 软件 选择(遗传算法) 通知 组分(热力学) 脑电图 机器学习 模式识别(心理学) 数据挖掘 人机交互 心理学 物理 程序设计语言 法学 精神科 热力学 政治学
作者
Maximilien Chaumon,Dorothy Bishop,Niko A. Busch
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:250: 47-63 被引量:774
标识
DOI:10.1016/j.jneumeth.2015.02.025
摘要

Electroencephalographic data are easily contaminated by signals of non-neural origin. Independent component analysis (ICA) can help correct EEG data for such artifacts. Artifact independent components (ICs) can be identified by experts via visual inspection. But artifact features are sometimes ambiguous or difficult to notice, and even experts may disagree about how to categorise a particular component. It is therefore important to inform users on artifact properties, and give them the opportunity to intervene. Here we first describe artifacts captured by ICA. We review current methods to automatically select artifactual components for rejection, and introduce the SASICA software, implementing several novel selection algorithms as well as two previously described automated methods (ADJUST, Mognon et al. Psychophysiology 2011;48(2):229; and FASTER, Nolan et al. J Neurosci Methods 2010;48(1):152). We evaluate these algorithms by comparing selections suggested by SASICA and other methods to manual rejections by experts. The results show that these methods can inform observers to improve rejections. However, no automated method can accurately isolate artifacts without supervision. The comprehensive and interactive plots produced by SASICA therefore constitute a helpful guide for human users for making final decisions. Rejecting ICs before EEG data analysis unavoidably requires some level of supervision. SASICA offers observers detailed information to guide selection of artifact ICs. Because it uses quantitative parameters and thresholds, it improves objectivity and reproducibility in reporting pre-processing procedures. SASICA is also a didactic tool that allows users to quickly understand what signal features captured by ICs make them likely to reflect artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue发布了新的文献求助10
刚刚
3秒前
唐山夕完成签到,获得积分20
3秒前
唐山夕发布了新的文献求助30
9秒前
彻底的完成签到,获得积分20
9秒前
陈展峰完成签到,获得积分10
10秒前
zyjsunye完成签到 ,获得积分0
10秒前
科研通AI5应助成美采纳,获得30
11秒前
11秒前
xxx完成签到 ,获得积分10
12秒前
Jonathan完成签到,获得积分10
16秒前
故意的睫毛膏完成签到 ,获得积分10
18秒前
自由的威完成签到,获得积分10
20秒前
高兴1江完成签到,获得积分10
24秒前
小二郎应助于晏孙采纳,获得10
24秒前
TOJNRU完成签到,获得积分10
27秒前
27秒前
共享精神应助科研通管家采纳,获得10
30秒前
李健应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得30
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
DING完成签到 ,获得积分10
31秒前
笑点低的寻冬完成签到,获得积分10
31秒前
银海里的玫瑰_完成签到 ,获得积分10
31秒前
hehe完成签到,获得积分10
40秒前
青阳完成签到,获得积分10
41秒前
Dlan完成签到,获得积分10
41秒前
纯真丁一郎完成签到,获得积分10
42秒前
吱吱草莓派完成签到 ,获得积分10
44秒前
冰巧完成签到 ,获得积分10
46秒前
48秒前
斯文的苡完成签到,获得积分10
51秒前
51秒前
负责珩发布了新的文献求助10
52秒前
玩命的糖豆完成签到 ,获得积分10
53秒前
yuaner发布了新的文献求助10
58秒前
linmo发布了新的文献求助10
59秒前
姜宇航完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798340
求助须知:如何正确求助?哪些是违规求助? 3343790
关于积分的说明 10317628
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296