液化
可塑性
剪切(地质)
本构方程
岩土工程
土壤水分
单剪
土壤液化
剪切流
流量(数学)
机械
非线性系统
临界切应力
剪应力
材料科学
地质学
剪切速率
物理
有限元法
热力学
复合材料
土壤科学
流变学
量子力学
作者
Hussein M. Zbib,Elias C. Aifantis
摘要
We propose a gradient-dependent flow theory of plasticity for metals and granular soils and apply it to the problems of shear banding and liquefaction. We incorporate higher order strain gradients either into the constitutive equation for the flow stress or into the dilantancy condition. We examine the effect of these gradients on the onset of instabilities in the form of shear banding in metals or shear banding and liquefaction in soils under both quasi-static and dynamic conditions. It is shown that the higher order gradients affect the critical conditions and allow for a wavelength selection analysis leading to estimates for the width or spacing of shear bands and liquefying strips. Finally, a nonlinear analysis is given for the evolution of shear bands in soils deformed in the post-localization regime.
科研通智能强力驱动
Strongly Powered by AbleSci AI