废水
硝化作用
活性污泥
化学
流出物
生态毒性
制浆造纸工业
污水处理
生物降解
阿替洛尔
环境化学
毒性
环境工程
环境科学
生物
氮气
有机化学
工程类
血压
内分泌学
作者
Alessandra Carucci,Giovanna Cappai,Martina Piredda
标识
DOI:10.1080/10934520600779000
摘要
In this experimental study both biological treatability of pharmaceuticals and their potential toxic effect in biological processes were evaluated. The pharmaceuticals were selected among those that are present at higher concentration in the Italian wastewater treatment plant effluents and widely used as antiulcer (ranitidine), beta-blocker (atenolol) and antibiotic (lincomycin). The present paper is the continuation of a work already presented,[1] which used a synthetic wastewater fed to laboratory scale SBR (Sequencing Batch Reactor) operated with different sludge ages (8 and 14 days), different biochemical conditions (aerobic or anoxic-aerobic mode) and several influent drug concentrations (2, 3 and 5 mg/L). In this case a real municipal wastewater was used as influent to the SBR. In parallel, batch tests were conducted to determine the removal kinetics of drugs and nitrogen. Toxicity tests using a titrimetric biosensor to verify possible inhibition on microorganisms were also performed. Finally, the possible adsorption of the pharmaceuticals on activated sludge was evaluated. The drugs under investigation showed different behaviours in terms of both biodegradability and toxicity effect on nitrifiers. Ranitidine showed generally low removal efficiencies (17-26%) and a chronic inhibition on nitrification. Atenolol showed generally higher removal efficiencies than ranitidine, even if the fairly good efficiency obtained in the previous experimentation with synthetic wastewater (up to 90%) was not attained with real wastewater (36%). No inhibition on nitrification was observed on both acclimated and non acclimated microorganisms with a high nitrification activity, whilst it was present with activated sludge characterised by a lower nitrification activity. Consistently with his pharmaceutical properties, lincomycin showed significant inhibition on nitrification activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI