正交性
有损压缩
无损压缩
表达式(计算机科学)
情态动词
模态分析
波数
数学分析
正常模式
流离失所(心理学)
模式(计算机接口)
物理
数学
有限元法
光学
声学
计算机科学
几何学
算法
材料科学
操作系统
统计
热力学
数据压缩
心理学
高分子化学
振动
程序设计语言
心理治疗师
作者
Fabien Treyssède,Laurent Laguerre
摘要
In the analysis of elastic waveguides, the excitability of a given mode is an important feature defined by the displacement-force ratio. Useful analytical expressions have been provided in the literature for modes with real wavenumbers (propagating modes in lossless waveguides). The central result of this paper consists in deriving a generalized expression for the modal excitability valid for modes with complex wavenumbers (lossy waveguides or non-propagating modes). The analysis starts from a semi-analytical finite element method and avoids solving the left eigenproblem. Analytical expressions of modal excitability are then deduced. It is shown that the fundamental orthogonality property to be used indeed corresponds to a form of Auld's real orthogonality relation, involving both positive- and negative-going modes. Finally, some results obtained from the generalized excitability are compared to the approximate lossless expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI