拉曼光谱
原位
分析化学(期刊)
液态水
化学
材料科学
环境化学
光学
高压
热力学
工程物理
有机化学
物理
作者
Alexandr V. Romanenko,Sergey V. Rashchenko,S. V. Goryaĭnov,Anna Likhacheva,Andrey V. Korsakov
标识
DOI:10.1177/0003702817752487
摘要
A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of “a linear background + one Gaussian” decomposition (the pressure can be measured using the formula P (GPa) = −0.0317(3)·Δν G (cm −1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).
科研通智能强力驱动
Strongly Powered by AbleSci AI