GIS partial discharge pattern recognition via deep convolutional neural network under complex data source

Softmax函数 卷积神经网络 局部放电 模式识别(心理学) 计算机科学 人工智能 支持向量机 开关设备 数据集 人工神经网络 数据挖掘 分类器(UML) 工程类 电压 电气工程 机械工程
作者
Hui Song,Jiejie Dai,Gehao Sheng,Xiuchen Jiang
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 678-685 被引量:120
标识
DOI:10.1109/tdei.2018.006930
摘要

This paper aims to improve recognition accuracies of partial discharge (PD) of complex data sources by employing deep convolutional neural network (DCNN). First, a dataset with complex data sources is established, which contains PD experiments data, substation live detection data and inference data. During the PD experiments, data are acquired from five types of artificial defect models on a real gas insulated switchgear (GIS) platform, using different PD detection instruments. Substation live detection data are collected from the running GIS in more than 30 substations, using two types of portable PD detection devices. Typical inference data in PD detection are also employed for algorithm validation. Second, a DCNN based PD pattern recognition method is presented. In the proposed method, all of the PD data are normalized into a uniform format of phase resolved pulse sequence (PRPS). A DCNN model is employed to automatically extract the features of a complex data set. The results are obtained by a Softmax classifier. Third, the DCNN based PD pattern recognition method is applied to the dataset with complex data sources and achieves 89.8% accuracy. The back-propagation neural network (BPNN) and support vector machine (SVM) methods with traditional statistical features are compared with the developed method. The result shows that accuracy is improved by the method proposed in this paper. With the enlargement of the data set and a more complex data sample, the improved value will further increase, thus the proposed method is more suitable for the engineering application of a big data platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助地上的樂園采纳,获得10
1秒前
1秒前
pianoboy完成签到,获得积分10
2秒前
F君发布了新的文献求助10
2秒前
3秒前
粗暴的坤完成签到 ,获得积分10
4秒前
YY完成签到,获得积分10
4秒前
ashleyjr完成签到,获得积分10
5秒前
Wri完成签到,获得积分10
5秒前
灵巧的导师完成签到,获得积分10
5秒前
舒适映寒完成签到,获得积分10
6秒前
论文多多完成签到,获得积分10
6秒前
然463完成签到 ,获得积分10
6秒前
1461完成签到 ,获得积分10
6秒前
浔初先生发布了新的文献求助10
7秒前
灵寒完成签到 ,获得积分10
7秒前
LALALADDDD完成签到,获得积分0
7秒前
8秒前
thadzhou完成签到,获得积分10
8秒前
mmr发布了新的文献求助10
8秒前
10秒前
白沙湾完成签到,获得积分10
10秒前
椰子在长江送礼物完成签到 ,获得积分0
11秒前
十二发布了新的文献求助10
13秒前
卡戎529完成签到 ,获得积分10
13秒前
14秒前
懒羊羊完成签到,获得积分10
15秒前
稳重的悟空完成签到 ,获得积分20
15秒前
F君完成签到,获得积分10
15秒前
17秒前
盖伊福克斯完成签到,获得积分10
17秒前
稳重紫蓝完成签到 ,获得积分10
18秒前
wen完成签到,获得积分10
18秒前
18秒前
小医僧发布了新的文献求助10
19秒前
负责冰凡完成签到,获得积分20
19秒前
科研通AI5应助zhiwei采纳,获得10
19秒前
我是老大应助十二采纳,获得10
21秒前
原子发布了新的文献求助200
22秒前
可口可乐发布了新的文献求助10
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728