清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

晶体孪晶 冲击波 材料科学 变形机理 衍射 打滑(空气动力学) 复合材料 光学 物理 冶金 机械 微观结构 热力学
作者
C. E. Wehrenberg,D. McGonegle,C. A. Bolme,Andrew Higginbotham,Amy Lazicki,H. J. Lee,Bob Nagler,H.-S. Park,B. A. Remington,Robert E. Rudd,Marcin Sliwa,Matthew Suggit,Damian Swift,F. Tavella,Luis A. Zepeda-Ruiz,J. S. Wark
出处
期刊:Nature [Nature Portfolio]
卷期号:550 (7677): 496-499 被引量:132
标识
DOI:10.1038/nature24061
摘要

Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率的笑翠完成签到 ,获得积分10
2秒前
吕半鬼完成签到,获得积分0
2秒前
一见憘完成签到 ,获得积分10
19秒前
知行者完成签到 ,获得积分10
47秒前
33完成签到 ,获得积分10
1分钟前
迪迦奥特曼完成签到,获得积分10
1分钟前
1分钟前
长情的兰发布了新的文献求助10
1分钟前
2分钟前
momo完成签到,获得积分10
2分钟前
四氧化三铁完成签到,获得积分10
2分钟前
fabius0351完成签到 ,获得积分10
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
4分钟前
萝卜猪完成签到,获得积分10
5分钟前
文文完成签到,获得积分10
5分钟前
5分钟前
练得身形似鹤形完成签到 ,获得积分10
5分钟前
文文发布了新的文献求助10
5分钟前
xingsixs完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
NexusExplorer应助谨慎初蝶采纳,获得10
6分钟前
6分钟前
优雅山柏发布了新的文献求助10
6分钟前
顺利问玉完成签到 ,获得积分10
6分钟前
6分钟前
谨慎初蝶发布了新的文献求助10
7分钟前
谨慎初蝶完成签到,获得积分10
7分钟前
领导范儿应助12345采纳,获得50
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
通科研完成签到 ,获得积分10
8分钟前
ning_qing完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
12345发布了新的文献求助50
8分钟前
无情的友容完成签到 ,获得积分10
9分钟前
不秃燃的小老弟完成签到 ,获得积分10
9分钟前
苏苏爱学习完成签到 ,获得积分10
9分钟前
spy完成签到 ,获得积分10
9分钟前
科研通AI5应助科研通管家采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603