Fingertip Piezoelectric Tactile Sensor Array for Roughness Encoding Under Varying Scanning Velocity

触觉传感器 表面光洁度 声学 表面粗糙度 标准差 人工智能 纹理(宇宙学) 计算机视觉 材料科学 计算机科学 光学 数学 物理 机器人 统计 图像(数学) 复合材料
作者
Weiting Liu,Ping Yu,Chunxin Gu,Xiaoying Cheng,Xin Fu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:17 (21): 6867-6879 被引量:44
标识
DOI:10.1109/jsen.2017.2721740
摘要

Roughness is a primary perceptual dimension of surface texture and plays an important role in human and robotic tactile object perception. In human, the magnitude estimates of roughness are independent of scanning velocity. On the other hand, artificial roughness encoding had to work under known scanning velocity or carry out stereotyped exploratory movement with almost the same velocity in each step action. We here presented a new fingertip piezoelectric tactile sensor array with a density similar to human Pacinian Corpuscles and capable of roughness eliciting from exploration. A novel characteristic variable Δt f prin. , which is product of response time interval between adjacent sensor units and the principal frequency of vibration, is first time proposed for roughness recognition. And the new characteristic variable is sensitive to surface roughness but independent of the scanning velocity. With the proposed characteristic variable, seven stimuli with a spatial period of 300, 400, 440, 480, 600, 800, and 1000 μm were successfully distinguished under varying scanning velocity exploration, with an identification accuracy of 99.93%. Above used velocity range is from 10 to 150 mm/s, which can fully cover velocities in common application neurophysiologic studies and human natural exploration. Repeatability is comparatively good with average relative standard deviation of only 1.31%. Furthermore, experiments with elliptical grating verified that this roughness encoding method also fits for the texture with two-dimensional pattern. In addition, texture amplitude detection experiments were performed and results show that the vibration amplitude (A prin. ) grows linearly when the texture amplitude (h) changes from 25 to 300 μm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123654完成签到,获得积分10
刚刚
研友_nPxRRn发布了新的文献求助10
刚刚
1秒前
1秒前
搜集达人应助光亮天蓉采纳,获得10
1秒前
nozero应助发嗲的天问采纳,获得50
3秒前
爱听歌澜完成签到,获得积分10
3秒前
啦啦咔嘞完成签到,获得积分10
3秒前
丘比特应助bofu采纳,获得10
4秒前
4秒前
科研助手6应助谨慎枫叶采纳,获得10
5秒前
5秒前
6秒前
充电宝应助绝不熬夜到2点采纳,获得10
6秒前
我是老大应助m1采纳,获得10
6秒前
隐形曼青应助smottom采纳,获得10
7秒前
8秒前
9秒前
Try_1完成签到,获得积分10
9秒前
15327432191完成签到 ,获得积分10
9秒前
青藤发布了新的文献求助10
9秒前
柒月发布了新的文献求助10
10秒前
10秒前
10秒前
公西行天完成签到,获得积分10
11秒前
科研通AI2S应助研友_nPxRRn采纳,获得10
11秒前
12秒前
六六是本人完成签到 ,获得积分10
12秒前
13秒前
标致的问晴完成签到,获得积分10
13秒前
djx123发布了新的文献求助10
13秒前
017发布了新的文献求助10
13秒前
14秒前
14秒前
XIAOMU发布了新的文献求助10
14秒前
黄芩完成签到 ,获得积分10
15秒前
啊啊啊啊完成签到,获得积分10
16秒前
无辜善愁完成签到,获得积分10
16秒前
16秒前
smottom发布了新的文献求助10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472