Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers

化学 氧气 析氧 光化学 物理化学 有机化学 电极 电化学
作者
Zhenlian Chen,Jun Li,Xiao Cheng Zeng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (27): 10751-10759 被引量:114
标识
DOI:10.1021/jacs.9b03710
摘要

Peroxo/superoxo is a key intermediate in oxygen evolution/reduction reactions in (electro)catalysis. However, peroxo/superoxo analogues have aroused controversies relevant to the origin of oxygen-anion redox. Specifically, some characteristics such as the magnitude of the O-O bond length in bulk materials have been puzzling during oxygen oxidation, as has the relationship between the peroxo/superoxo intermediate and the release of oxygen. The latter is a major safety concern to the application of oxygen-anion redox in lithium ion batteries. Herein, we present a unified modeling of the full delithiation process for model system Li2MnO3 by using first-principles calculations. We find that the cationic antisite defects and the electron deficiency are two major limiting factors in the anionic oxidation whose state can evolve, as the degree of delithiation increases, from the electron/hole, through peroxo-like O2δ- dimer formation, to the eventual release of gas-phase oxygen molecule. During the delithiation process, the dangling oxygen (i.e., singly coordinated with Mn) pairs play a critical role in intermediate dimer formation. Meanwhile, we identify five generic binding patterns of O2δ- dimers with Mn ions for which the O-O bond length varies from 1.45 Å in the peroxo state to 1.22 Å in the gas-phase oxygen molecule. Moreover, the dominant features of the three molecular orbitals, σc, πa, and πb, are distinguished, with the corresponding energy levels being highly delocalized and mixed as a result of the interplay with the host lattice. This work provides a deep understanding of the intermediate states of the anionic redox and suggests new strategies that mitigate oxygen release for the design of highly efficient and safe Li-rich cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不打烊吗完成签到,获得积分20
刚刚
Runing完成签到,获得积分10
刚刚
刚刚
浮游应助辛勤的乌采纳,获得10
1秒前
111发布了新的文献求助10
1秒前
Enso发布了新的文献求助20
1秒前
香蕉诗蕊应助feilei采纳,获得10
1秒前
怕孤独的访云完成签到 ,获得积分10
2秒前
2秒前
lkk完成签到,获得积分10
2秒前
张瑜发布了新的文献求助10
2秒前
2秒前
kathy完成签到,获得积分10
3秒前
3秒前
海鸥跳海发布了新的文献求助10
4秒前
爱吃米线应助刘夕采纳,获得10
4秒前
小花生发布了新的文献求助30
5秒前
6秒前
zzy发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
sztao发布了新的文献求助10
7秒前
8秒前
wanci应助正直听芹采纳,获得10
8秒前
苹果紊完成签到,获得积分10
8秒前
itharmony完成签到,获得积分10
8秒前
无极微光应助杨钧贺采纳,获得20
8秒前
XNNI发布了新的文献求助30
8秒前
111完成签到,获得积分10
9秒前
Jotaro发布了新的文献求助10
9秒前
wonwojo完成签到 ,获得积分10
10秒前
懒虫儿坤发布了新的文献求助10
10秒前
小姜向阳开应助YH采纳,获得10
10秒前
蜗牛fei完成签到,获得积分10
11秒前
11秒前
四个空格完成签到,获得积分10
11秒前
不打烊吗发布了新的文献求助10
11秒前
爱科研的小小怪完成签到,获得积分20
12秒前
大聪明完成签到,获得积分20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680