Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network

胶质瘤 异柠檬酸脱氢酶 接收机工作特性 核医学 置信区间 医学 磁共振成像 灌注 内科学 放射科 核磁共振 物理 癌症研究
作者
Kyu Sung Choi,Seung Hong Choi,Bumseok Jeong
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:21 (9): 1197-1209 被引量:72
标识
DOI:10.1093/neuonc/noz095
摘要

Abstract Background The aim of this study was to predict isocitrate dehydrogenase (IDH) genotypes of gliomas using an interpretable deep learning application for dynamic susceptibility contrast (DSC) perfusion MRI. Methods Four hundred sixty-three patients with gliomas who underwent preoperative MRI were enrolled in the study. All the patients had immunohistopathologic diagnoses of either IDH-wildtype or IDH-mutant gliomas. Tumor subregions were segmented using a convolutional neural network followed by manual correction. DSC perfusion MRI was performed to obtain T2* susceptibility signal intensity-time curves from each subregion of the tumors: enhancing tumor, non-enhancing tumor, peritumoral edema, and whole tumor. These, with arterial input functions, were fed into a neural network as multidimensional inputs. A convolutional long short-term memory model with an attention mechanism was developed to predict IDH genotypes. Receiver operating characteristics analysis was performed to evaluate the model. Results The IDH genotype predictions had an accuracy, sensitivity, and specificity of 92.8%, 92.6%, and 93.1%, respectively, in the validation set (area under the curve [AUC], 0.98; 95% confidence interval [CI], 0.969–0.991) and 91.7%, 92.1%, and 91.5%, respectively, in the test set (AUC, 0.95; 95% CI, 0.898–0.982). In temporal feature analysis, T2* susceptibility signal intensity-time curves obtained from DSC perfusion MRI with attention weights demonstrated high attention on the combination of the end of the pre-contrast baseline, up/downslopes of signal drops, and/or post-bolus plateaus for the curves used to predict IDH genotype. Conclusions We developed an explainable recurrent neural network model based on DSC perfusion MRI to predict IDH genotypes in gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
WangSir完成签到,获得积分10
6秒前
6秒前
hs完成签到,获得积分10
7秒前
8秒前
zzz完成签到 ,获得积分10
9秒前
9秒前
哈哈哈完成签到,获得积分10
10秒前
Echo发布了新的文献求助10
10秒前
心灵美草丛完成签到,获得积分10
10秒前
empty完成签到,获得积分20
11秒前
荣枫发布了新的文献求助10
12秒前
高贵安青完成签到 ,获得积分10
13秒前
能干雁桃发布了新的文献求助10
14秒前
fhuili完成签到,获得积分10
15秒前
18秒前
Cc完成签到,获得积分10
19秒前
苻人英完成签到,获得积分10
19秒前
寻舟者完成签到,获得积分10
22秒前
Echo完成签到,获得积分10
23秒前
NSS完成签到 ,获得积分10
24秒前
今后应助小杨采纳,获得10
24秒前
tx发布了新的文献求助10
26秒前
29秒前
30秒前
怕孤独的鹭洋完成签到,获得积分10
33秒前
咪咪完成签到,获得积分10
33秒前
Lucas应助tx采纳,获得10
33秒前
饱满的箴完成签到 ,获得积分10
35秒前
英姑应助Jokko采纳,获得10
38秒前
涵泽发布了新的文献求助10
38秒前
Singularity应助拼搏向上采纳,获得10
41秒前
41秒前
谨慎采白完成签到 ,获得积分10
41秒前
执着的忆雪完成签到,获得积分10
42秒前
Hello应助ljs采纳,获得10
42秒前
小蛮样完成签到,获得积分10
45秒前
Hello应助呼呼采纳,获得10
47秒前
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445